• Title/Summary/Keyword: 퍼지 제어기(fuzzy controller)

Search Result 1,235, Processing Time 0.035 seconds

Design of Parallel Type Fuzzy Controller Using Model Reference Fuzzy Algorithm (모델참조 퍼지 알고리즘을 이용한 병렬형 퍼지제어기 설계)

  • 추연규;김병철;이광석;김현덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.888-892
    • /
    • 2002
  • In this paper, parallel type fuzzy controller is designed by using a hybrid connected type fuzzy-PID controller and a model reference fuzzy controller. The first controller that consists a fuzzy-PI and a fuzzy-PD making a hybrid type fuzzy-PID controller plays a role as firstly reaching stable responses and secondly overcoming disturbance in plants. The second controller, model reference fuzzy controller, plays a role as reaching faster responses than other controllers. We have confirmed that we get rapid and stable responses and the controller overcomes disturbance in a short time when there happens disturbance by using parallel type fuzzy controller applying to DC motor in this paper.

  • PDF

Control of DC-Servomotor Speed by Using Fuzzy Controller (퍼지제어기를 이용한 DC 서보 모터의 속도 제어)

  • Kang, Geun-Taek;Kim, Young-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.76-80
    • /
    • 1990
  • DC-servomotor acts an important role in robots and manipulatirs. But the precise control of DC-motor is difficult by a using usual linear controller because of the nonlinear characteristics of DC-motor. This study suggests the use of fuzzy controller in the control of DC-servomotor speed. The fuzzy controller is designed from a fuzzy model which can represent nonlinear systems very well. Hence the fuzzy controller is very useful in the control of nonlinear systems such as DC-motor. We construct a fuzzy model of DC-servomotor, design a fuzzy controller from the fuzzy model, and compare that with a linear controller. When we use the fuzzy controller, the static ripples are reduced and the rise time is required 20% less than in using a linear controller.

  • PDF

Sensorless MPPT Control of a Grid-Connected Wind Power System Using a Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 계통연계형 풍력발전 시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.484-493
    • /
    • 2011
  • The MPPT algorithm using neuro-fuzzy controller is proposed to improve the performance of fuzzy controller in this paper. The width of membership function and fuzzy rule have an effect on the performance of fuzzy controller. The neuro-fuzzy controller has the response characteristic which is superior to the existing fuzzy controller, because of using the optimal width of the fuzzy membership function through the neural learning. The superior control characteristic of a proposed algorithm is confirmed through simulation and experiment results.

Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller (크리스프 타입 퍼지 제어기의 동특성 해석)

  • 권오신;최종수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.67-76
    • /
    • 1995
  • In recent research on the fuzzy controller, the crisp type fuzzy controller model, in which the consequent part of the fuzzy control rules are crisp real numbers instead of fuzzy sets, due to its simplicity in calculation, has been widely used in various applications. In this paper we try to analyze the dynamical behavior of the crisp type fuzzy controller with both inference methods of min-max compositional rule and product-sum inference. The analysis reveals that a crisp type fuzzy controller behaves approximately like a PD controller.

  • PDF

Application of a Fuzzy Controller with a Self-Learning Structure (자기 학습 구조를 가진 퍼지 제어기의 응용)

  • 서영노;장진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1182-1189
    • /
    • 1994
  • In this paper, we evaluate the performance of a fuzzy controller with a self-learning structure. The fuzzy controller is based on a fuzzy logic that approximates and effectively represents the uncertain phenomena of the real world. The fuzzy controller has control of a plant with a fuzzy inference logic. However, it is not easy to decide the membership function of a fuzzy controller and its controlrule. This problem can be solved by designing a self-learning controller that improves its own contropllaw to its goal with a performance table. The fuzzy controller is implemented with a 386PC, an interface board, a D/A converter, a PWM(Pulse Width Modulation) motor drive-circuit, and a sensing circuit, for error and differential of error. Since a Ball and Beam System is used in the experiment, the validity of the fuzzy controller with the self-learning structure can be evaluated through the actual experiment and the computer simulation of the real plant. The self-learning fuzzy controller reduces settling time by just under 10%.

  • PDF

Performance analysis of learning algorithm for a self-tuning fuzzy logic controller (자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석)

  • 정진현;이진혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2189-2198
    • /
    • 1994
  • In this paper, a self-tuning fuzzy logig controller is implemented to control a DC servo motor by the self-tuning technique based on fuzzy meta-rules with learning in several algorithms to improve the performance of the fuzzy logic controller used in a fuzzy control system. Simulations and experimental results of the self-tuning fuzzy logic controller are compared with those of the fuzzy logic controller to evaluate its performance.

  • PDF

Hybrid Fuzzy Controller for High Performance (고성능 제어를 위한 하이브리드 퍼지 제어기)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper, we propose a hybrid fuzzy controller for high performance. Hybrid fuzzy controller are combined Fuzzy and PID controller. In tuning the controller, the parameters of PID and the factors fuzzy controllers were obtained from the model identification and by using genetic algorithms, respectively. Simulation examples demonstrated a better performance of the proposed controller than conventional ones.

Design of Fuzzy Controller for Two Wheeled Inverted Pendulum Robot Using Neural Network (신경회로망을 이용한 이륜 역진자 로봇의 퍼지제어기 설계)

  • Jung, Gun-Oo;An, Tae-Hee;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.228-236
    • /
    • 2012
  • In this paper, a controller for two wheeled inverted pendulum robot is designed to have more stable balancing capability than conventional controller. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the controller are obtained for specified 3 users' weights using trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the user's weight is arbitrarily selected. Through the simulation study we find that the designed fuzzy controller using the neural network is superior to the conventional fuzzy controller.

The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control (BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Kim, Sung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.823-829
    • /
    • 2006
  • In this paper presents approaches to the design of a hybrid fuzzy logic proportional plus conventional integral- derivative(fuzzy P+ID) controller in an incremental form. This controller is constructed by using an incremental fuzzy logic controller in place of the proportional term in a conventional PID controller. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Control of Systems Containing Deadzone of PID Controller using Fuzzy Compensator and Fuzzy Tuner (퍼지 보상기와 퍼지 동조기를 이용한 PID제어기의 Deadzone을 포함한 시스템 제어)

  • 박재형;김승철;조용성;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.403-410
    • /
    • 1999
  • A conventional PID controller has poor performance when it applied to systems with unknown deadzones. To solve this problem, this paper proposes PID controller using two layered-fuzzy logic. The structure of controller is reconstructed with fuzzy compensator and fuzzy tuner on the conventional PID controller. Our proposed control scheme shows superior transient and steady-state performance compared to conventional PID controller. The scheme is robust to variations in deadzone nonlinearities as well as the steady-state gain of the plant. The performance of the developed controller is verified through simulation.

  • PDF