• Title/Summary/Keyword: 퍼지표현

Search Result 442, Processing Time 0.033 seconds

Group Decision Making for New Professor Selection Using Fuzzy TOPSIS (퍼지 TOPSIS를 이용한 신임교수선택을 위한 집단의사결정)

  • Kim, Ki-Yoon;Yang, Dong-Gu
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.229-239
    • /
    • 2016
  • The aim of this paper is to extend the TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) to the fuzzy environment for solving the new professor selection problem in a university. In order to achieve the goal, the rating of each candidate and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. In this paper, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all candidates. This research derived; 1) 4 evaluation criteria(research results, education and research competency, personality, major suitability) for new professor selection, 2) the 5 step procedure of the proposed fuzzy TOPSIS method for the group decision, 3) priorities of 4 candidates in the new professor selection case. The results of this paper will be useful to practical expert who is interested in analyzing fuzzy data and its multi-criteria decision-making tool for personal selection problem in personal management. Finally, the theoretical and practical implications of the findings were discussed and the directions for future research were suggested.

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Modeling the Distribution Demand Estimation for Urban Rail Transit (퍼지제어를 이용한 도시철도 분포수요 예측모형 구축)

  • Kim, Dae-Ung;Park, Cheol-Gu;Choe, Han-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2005
  • In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.

A Study on the Lighting Control System using Fuzzy Control System and RGB Modules in the Ship's Indoor (퍼지 제어 시스템과 RGB LED 모듈을 이용한 선박 실내용 조명 제어 시스템에 관한 연구)

  • Nam, Young-Cheol;Lee, Sang-Bae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • With regard to LED lighting devices which have currently been commercialized, LED operating sequences are being sold in a fixed state. In such a state, the external environmental factors are not taken into consideration as only the illumination environment application is considered. Currently, it is difficult to create an optimal lighting environment which can adapt to changes in external environmental factors in the ship. Therefore, it was concluded that there is a need to input the external environment value so that the optimal illumination value can be reflected in real time in order to adapt more organically and actively to the change of external environmental factors. In this paper, we used a microprocessor as an integrated management system for environmental data that changes in real time according to existing external environmental factors. In addition, a controller capable of lighting control of RGB LED module by combining fuzzy inference system. For this, a fuzzy control algorithm is designed and a fuzzy control system is constructed. The distance and the illuminance value from the external environment element are input to the sensor, and these values are converted to the optimum illumination value through the fuzzy control algorithm, and are expressed through the dimming control of the RGB LED module and the practical effectiveness of the fuzzy control system is confirmed.

A Design of Fuzzy Controllers Using Matrix Encoding Genetic Algorithm (행렬 표현 유전자 알고리즘을 이용한 퍼지 제어기의 설계)

  • 김동일;차성민;강전배;권기호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.153-156
    • /
    • 2001
  • Fuzzy controllers also show good performance In case of the systems being nonlinear and difficult to solve. But these fuzzy controllers have problems which have to decide suitable rules and membership functions. In general we decide those using the heuristic methods or the experience of experts. Therefore, many researchers have applied genetic algorithms to make fuzzy rule automatically. In this paper, we suggest a new coding method and a new crossover method to maintain the good fuzzy rule base and the shape of membership

  • PDF

Rough Set Based Interpretation of Color Emotion (러프 집합을 이용한 색채 감성의 해석)

  • Park, Eun-Jong;Kim, Sun-Yeong;Lee, Jun-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2007.05a
    • /
    • pp.109-113
    • /
    • 2007
  • 본 논문은 칼라 패턴의 감성 평가를 위해 러프 집합 이론이 효과적으로 사용될 수 있음을 보여준다. 우리는 주어진 랜덤 칼라 패턴을 보여주고 사람들로 하여금 감성 평가를 하게 하여 수집된 심리학적 실험 데이터를 기반으로 VPRS(Variable Precision Rough Set) 이론을 적용, 관련 규칙들을 추출하였다. 이러한 규칙들은 벽지 등의 컬러 패턴들에 대한 근사적인 감성 평가 뿐만 아니라, 이미지 속성 공간을 언어적 이미지 스케일로 표현된 감성 공간으로 매핑 시키기 위한 적응 퍼지 시스템 등의 초기 조건으로도 사용할 수도 있다.

  • PDF

Case-Based Retrieval System Construction (Case 기반 컴포넌트 검색 시스템 설계)

  • Kim, Gui-Jug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.357-360
    • /
    • 2005
  • 본 연구는 소스 코드를 재사용하기 위한 Case 기반 검색에 있어서 효율적인 검색 시스템을 구축하는 방법을 제안하고자 한다. 소스 코드의 객체지향적인 특성을 만족하기 위하여 각 노드 간 객체지향 상속의 개념을 표현할 수 있도록 초기 관련값을 시소러스로 구축하고자 한다. 이때, 각 Case를 구성하는 클래스들을 상속관계에 따라 개념적으로 분류하였고, 시소러스 방법에 퍼지 논리를 적용하여 객체지향 시소러스를 생성하여 의미망을 구축한다. 또한, 의미망의 노드와 간선을 활성화시키고 활성값을 전파시키기 위해 사용되는 spreading activation 방법의 단점을 보완하여 spreading activation의 성능은 최대한 유지하면서 검색 속도를 향상시킬 수 있는 방법을 제안하고자 한다.

  • PDF

Fuzzy Clustering with Improving Gustafson-Kessel Algorithm (개선된 Gustafson-Kessel 알고리즘을 이용한 퍼지 클러스터링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.239-242
    • /
    • 2003
  • 본 논문에서는 Gaussian Mixture Model을 이용한 Gustafson-Kessel 알고리즘의 성능을 개선하였다. 분포 및 밀도가 다른 데이터에 대하여 적절한 클러스터 파라미터를 추정함으로써 클러스터링의 성능을 개선한다. 일반적인 클러스터링 알고리즘의 경우, 데이터가 편중되거나 각 데이터의 밀도가 서로 틀린 경우 클러스터의 파라미터가 정확하게 클러스터를 표현하지 못하는 문제점을 가지고 있다. 제안된 방법에서는 Gustafson-Kessel 알고리즘을 이용하여 클러스터 파라미터를 추정하며 알고리즘내의 파라미터 일부를 Gaussian Mixture Model을 이용하여 동적으로 갱신하였다 시뮬레이션을 통하여 제안된 방법의 유용성을 보인다.

  • PDF

Personality Learning Techniques for Intelligent Information System (지능형 정보시스템을 위한 개인성 학습 기법)

  • 김호준;박정선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.310-312
    • /
    • 2001
  • 본 연구에서는 정보시스템의 지능형 인터페이스를 위하여 사용자의 개인성을 학습하는 방법론으로서 신경망 이론의 활용가능성을 고찰한다. 입력형식의 유연성, 입력의 왜곡 및 소실가능성 등 시스템의 실용성과 연관하여 나타나는 자료의 특성을 수용하기 위하여, 학습과정에서 신호표현의 다양화와 부분 패턴의 의한 분류 기능 등을 개선한 신경망모델을 제안한다. 이를 위하여 퍼지 양방향 연상기억장치와 구간연산으로 일반화된 다층 신경망모델을 결합하여 혼합형 분류모형을 제시하고 그 유용성을 고찰한다. 실험은 전공분야 선택을 위한 개인의 적성분석시스템을 대상으로 구현하였다.

  • PDF

Comparative Study of Knowledge Extraction on the Industrial Application (산업분야에서의 지식 정보 추출에 대한 비교연구)

  • Woo, Young-Kwang;Kim, Sung-Sin;Bae, Hyun;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.251-254
    • /
    • 2003
  • 데이터는 어떤 특성을 나타내는 언어적 또는 수치적 값들의 표현이다. 이러한 데이터들을 목적에 따라 구성한 것이 정보이며, 문제 해결이나 패턴 분류, 또는 의사 결정을 위해 정보들간의 관계를 규칙으로 체계화하는 것이 지식이다. 현재 대부분의 산업 분야에서 시스템에 대한 이해를 높이고 시스템의 성능을 향상시키기 위해 지식을 추출하고, 적용시키는 작업들이 활발히 이루어지고 있다. 지식 정보의 추출은 지식의 획득, 표현, 구현의 단계로 구성되며 이렇게 추출된 지식 정보는 규칙으로 도출된다. 본 논문에서는 여러 산업 분야에 걸쳐 다양하게 적용되는 지식 정보 추출 방법들에 대해 그 영역별로 알아보고 여러 시험 데이터들과 실제 시스템에 클러스터링(CL), 입력공간 분할(ISP), 뉴로-퍼지(NF), 신경망(NN), 확장 행렬(EM) 등의 방법들을 적용시킨 결과들을 비교 분석하고자 한다.

  • PDF