• Title/Summary/Keyword: 퍼지충돌위험도

Search Result 34, Processing Time 0.18 seconds

Use of Fuzzy technique for Calculating Degree of Collision Risk in Obstacle Avoidance of Unmanned Underwater Vehicles (퍼지기법을 이용한 무인잠수정의 장애물회피를 위한 충돌위험도 산출)

  • Jung, Hee;Kim, Seong-Gon;Kim, Yong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.112-119
    • /
    • 2011
  • This paper introduces a technique for calculating the degree of collision risk used in collision avoidance system of AUVs. The collision risk will be reckoned with the fuzzy inference, which uses TCPA(Time of the Closest Point of Approach) and DCPA(Distance of the Closest Point of Approach) as factors. A method to obtain TCPA and DCPA for 3-dimension is suggested. The degree of collision risk is provided to collision avoidance system, and is verified the effectiveness through simulation.

Automatic Control for Ship Automatic Collision Avoidance Support (선박자동충돌회피지원을 위한 자동제어)

  • 임남균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.81-86
    • /
    • 2003
  • The studies on automatic ship collision avoidance system, which have been carried out last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation 3-4 years ago because of the absence of the tool to get other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the algorithm of automatic ship collision support system. The NOMOTO ship's mathematic model is adopted in simulation for its simplicity. The fuzzy reason rules are used for course-keeping system and for the calculation of Collision Risk using TCPA/DCPA. Moreover‘encounter type’ between two ships is analyzed based on Regulations for Preventing Collisions at Sea and collision avoidance action is suggested, Some situations are simulated to verity the developed algorithm and appropriate avoidance action is shown in the simulation.

  • PDF

Automatic Control for Ship Collision Avoidance Support System (선박충돌회피지원 시스템을 위한 자동제어)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.375-381
    • /
    • 2003
  • The studies on automatic ship collision avoidance system, which have been carried out last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation 3-4 years ago because of the absence of the tool to get other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the algorithm of automatic ship collision support system. The NOMOTO ship's mathematic model is adopted in simulation for its simplicity. The fuzzy reason rules are used for course-keeping system and for the calculation of Collision Risk using TCPA/DCPA. Moreover ‘encounter type’ between two ships is analyzed based on Regulations for Preventing Collisions at Sea and collision avoidance action is suggested. Some situations are simulated to verity the developed algorithm and appropriate avoidance action is shown in the simulation.

A Study on the Automatic Control for Collision Avoidance of the Ships around the Coast (선박의 충돌회피를 위한 자동제어에 관한연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.75-76
    • /
    • 2007
  • A mis-handling of the ship operators show high rate among the whole marine accidents. Since the port conditions have been getting worse. also as her size and speed increase, collision risk has been increased so that ship needs the automatic control system for collision. From that purpose, this research has been proceeded. The research has based on the MMG mathematical model, used Surge-Sway-Yaw motion equation, the information from the position and estimated time of collision point (DCPA and TCPA) to determine the collision risk with Fuzzy theory. To verify this system, ship was simulated when the ship encountered multitude of ships around the coast. The simulation result shows good application in avoiding ship collisions around the coast.

  • PDF

Development of a Navigation Control Algorithm for Mobile Robots Using D* Search and Fuzzy Algorithm (D* 서치와 퍼지 알고리즘을 이용한 모바일 로봇의 충돌회피 주행제어 알고리즘 설계)

  • Jung, Yun-Ha;Park, Hyo-Woon;Lee, Sang-Jin;Won, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, we present a navigation control algorithm for mobile robots that move in environments having static and moving obstacles. The algorithm includes a global and a local path-planning algorithm that uses $D^*$ search algorithm, a fuzzy logic for determining the immediate level of danger due to collision, and a fuzzy logic for evaluating the required wheel velocities of the mobile robot. To apply the $D^*$ search algorithm, the two-dimensional space that the robot moves in is decomposed into small rectangular cells. The algorithm is verified by performing simulations using the Python programming language as well as by using the dynamic equations for a two-wheeled mobile robot. The simulation results show that the algorithm can be used to move the robot successfully to reach the goal position, while avoiding moving and unknown static obstacles.

An Autonomous Navigation System for Unmanned Underwater Vehicle (무인수중로봇을 위한 지능형 자율운항시스템)

  • Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2007
  • UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

A Study on Automatic Control for Collision Avoidance of a Ship under Appearance of Multi-vessels (다수선박의 충돌회피를 위한 자동제어에 관한 연구)

  • Yoon Ji-Hyun;Lee Seung-Keon;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.29-34
    • /
    • 2005
  • A mis-handling of the ship operators, treated as one qf the main causes of a ship accidents, normally has caused a ship to collide with obstacles like a reef, a rock and other ships etc. since their ability has been declining little by little even though the port conditions have been getting worse. The ship needs a highly sophisticated technology as her size and speed increase as the ship have been demanded. For example, Auto Avoidance Control System gradually has been receiving a growing interest to control the entire ship safely. From that purpose, this research has been done. The research was based on the MMG mathematical model, used Surge-Sway-Yaw-Roll motion equation and Fuzzy theory for calculating the collision-risk Also the research successively was done when the ship encountered continual multitude ships.

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

Structure Analysis of Ship′s Collision Causes using Fuzzy Structural Modeling (퍼지구조모델을 이용한 선박충돌사고 원인의 구조분석)

  • Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • The prevention of marine accidents has been a important topic in marine society for long time, and various safety policies and countermeasures have been developed and applied to prevent those accidents. In spite of these efforts, however, significant marine accidents have taken place intermittently. Ship is being operated under a highly dynamic environments, and many factors are related with ship's collision, whose factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that‘ship's collision’is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to analyse human factor. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision using FSM are performed. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.

A Study on the Risk Control Measures of Ship's Collision (선박충돌사고 위험성 제어방안에 관한 연구)

  • 양원재;금종수;전승환
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.59-67
    • /
    • 2003
  • The prevention of marine accidents has been a major topic in marine society for long time and various safety policies and Countermeasures have been developed and applied to prevent those accidents. In spite of these efforts, however significant marine accidents have taken place intermittently. Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that ‘ship's collision’ is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to propose risk control countermeasures of ship's collision. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision using FSM are performed. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.

  • PDF