• Title/Summary/Keyword: 퍼지추론시스템

Search Result 574, Processing Time 0.03 seconds

The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness (퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness)

  • Baek, Deok-Soo;Park, In-Kue
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.97-104
    • /
    • 2002
  • In this paper we describe the method which optimizes the partition of the input space by means of measure of fuzziness for fuzzy neural network. It covers its generation of fuzzy rules for input sub space. It verifies the performance of the system depended on the various time interval of the input. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rule base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. According to the input interval the proposed inference procedure proves that the fast convergence of root mean square error (RMSE) owes to the optimal partition of the input space

Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process (비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Kang, Hyung-Kil;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.224-231
    • /
    • 2012
  • In this paper, we introduce a fuzzy inference systems based on fuzzy c-means clustering algorithm for fuzzy modeling of nonlinear process. Typically, the generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, the fuzzy rules of fuzzy model are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process.

Fuzzy Membership Functions and AHP-Based Negotiation Support in Electronic Commerce (퍼지 멤버십 함수와 AHP 추론기법을 이용한 전자상거래 협상지원에 관한 연구)

  • 김진성
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.64-67
    • /
    • 2002
  • 인터넷 기반의 전자상거래에 참여하는 판매자와 구매자는 가격, 마진 등 다양한 거래조건들을 가지고 협상 (negotiation)을 진행하는 경우가 많다. 그러나, 기존연구에서는 대부분 가격과 거래량과 같은 두 개 미만의 정량적 (quantitative)인 거래조건을 중심으로 협상을 진행하는 방안을 중점적으로 다루었다. 그 결과, 단순한 실험적 문제에 대해서만 협상지원이 가능했고, 실세계의 전자상거래 협상과정에서 발생할 수 있는 다중 협상 요인들간의 동적인 변화를 고려하지 못했다는 지적을 피하기 어렵다. 본 연구에서는 이러한 점에 주목하여 전자상거래 판매자와 구매자가 웹 상에서 다차원적인 거래조건을 가지고 실시간으로 시뮬레이션을 하면서 보다 동적으로 협상을 수행할 수 있도록 퍼지 멤버심 함수와 AHP 추론기법을 이용한 전자상거래 협상지원 (Fuzzy AHP Negotiation support. FAHP-NEGO) 메커니즘을 제안하고자 한다. 실험결과, 협상에 필요한 정량적인 값과 판매자와 구매자의 주관적인 의사결정 행동양식이 반영된 보다 동적인 협상을 진행할 수 있었다. 따라서, 본 연구결과는 향후, 전자상거래 협상에 있어서 보다 현실적인 협상을 지원할 수 있을 것으로 기대한다.

  • PDF

A Knowledge-Based Linguistic Approach for Researcher-Selection (학술전문가 선정을 위한 지식 기반 언어적 접근)

  • Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.549-553
    • /
    • 2002
  • This paper develops knowledge-based multiple fuzzy rules for researcher-selection by automatic ranking process. Inference rules for researcher-selection are created, then the multiple fuzzy rule system with max-min inference is applied. The way to handle for selection standards according to a certain criteria in dynamic manner, is also suggested in a simulation model. The model offers automatic, fair, and trust decision for researcher-selection processing.

The Design of Student Module for Web-Based Instruction System using Fuzzy Theory (웹기반 교육 시스템에서 퍼지이론을 이용한 학습자 모듈의 설계)

  • 백영태;서대우;왕창종
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.35-43
    • /
    • 2001
  • This thesis proposes a diagnostic formula for student's responses based on linguistic variable concept of fuzzy that makes domain expert to input the kernel elementeasily that constructs domain independent student module. And the domain expert can construct the rule with linguistic variable that is used to inference student's recognition state. This study designs a student module that can inference student's recognition state using this rule represented by linguistic variable.

  • PDF

Classification Performance of News Filtering System by Fuzzy Inference and Kohonen Network (퍼지추론과 코호넨 신경망을 사용한 뉴스 필터링 시스템의 분류 능력)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Byeong-Man
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.291-294
    • /
    • 2003
  • 많은 양의 유즈넷 뉴스 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 하지만 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자와 취향이 가장 유사한 뉴스그룹을 코호넨 신경망을 이용하여 분류하는 서비스를 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 뉴스 필터링 시스템의 분류 성능을 평가하기 위하여 유클리드 거리 면에서 비교한 결과, 제안한 방법의 유용성을 확인할 수 있었다.

  • PDF

Fuzzy Modeling and Fuzzy Rule Generation in Global Approximate Response Surfaces (전역근사화 반응표면의 생성을 위한 퍼지모델링 및 퍼지규칙의 생성)

  • Lee, Jong-Soo;Hwang, Jeong-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • As a modeling method where the merits of fuzzy inference system and evolutionary computation are put together, evolutionary fuzzy modeling performs global approximate optimization. The paper proposes fuzzy clustering as fuzzy rule generation process which is one of the most important steps in evolutionary fuzzy modeling. With application of fuzzy clustering into the experiment or simulation results, fuzzy rules which properly describe non-linear and complex design problem can be obtained. The efficiency of evolutionary fuzzy modeling can be improved utilizing the membership degrees of data to clusters from the results of fuzzy clustering. To ensure the validity of the proposed method, the real design problem of an automotive inner trim is applied and the global approximation is achieved. Evolutionary fuzzy modeling is performed for several cases which differ in the number of clusters and the criterion of rule selection and their results are compared to prove that the proposed method can provide proper fuzzy rules for a given system and reduce computation time while maintaining the errors of modeling as a satisfactory level.

Design of Interval Type-2 TSK Fuzzy Inference System (Interval Type-2 TSK 퍼지 추론 시스템의 설계)

  • Ji, Kwang-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1849-1850
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합의 확장으로 Type-1 퍼지 집합으로는 다루기 힘든 언어적인 불확실성을 다루기 위해 고안되었다. 대표적인 퍼지 논리 시스템(Fuzzy Logic System; FLS)으론 Mamdani FLS 모델과 TSK FLS모델이 있다. 본 논문에서는 Interval Type-2 TSK FLS를 구성한다. FLS 구성을 위한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 전.후반부 파라미터들은 오류역전파 알고리즘을 통한 학습으로 결정한다. 본 논문에서는 Type-1 TSK FLS와 Interval Type-2 TSK FLS를 설계하고 가스로 공정 데이터에 적용하여 성능을 비교 분석한다. 또한 노이즈를 추가한 데이터들을 통하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF

Fuzzy evaluation system for level-based Computational Thinking Skill Education (수준별 컴퓨팅 사고력 교육을 위한 퍼지평가 시스템)

  • Han, SeungEui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.641-642
    • /
    • 2020
  • 최근 교육서비스 시장은 학습자의 수준을 고려한 수준별 교육으로 나아가고 있다. 이때 학습자 수준의 진단을 위하여 다양한 방법의 진단평가가 연구되고 있으며 평가 기준의 언어적 모호함을 해결하기 위해 퍼지 이론을 도입한 평가 방법 역시 하나의 방법으로 대두되고 있다. 본 논문에서는 컴퓨팅 사고력 교육 역시 수준별 교육으로 나아가기 위해 컴퓨팅 사고력 학습을 계층화 하고, 학습자가 학습 시작전 퍼지 추론을 바탕으로 한 진단 평가를 실시하여 학습자 수준에 맞는 교육 커리큘럼의 진입점을 찾아 맞춤형 컴퓨팅 교육을 제공할 수 있도록 하는 퍼지 평가 시스템을 연구·개발한다.

  • PDF

Designing of an Efficient Fuzzy-induced Distance Classifier for the Recognition of Binary Images (이진 영상 인식을 위한 효과적인 퍼지 기반 거리 인식기의 설계)

  • 송영기;강환일
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.469-474
    • /
    • 2000
  • 본 논문에서는 두 이진 영상의 비교시 그 유사도를 결정하는 새로운 방법을 제안한다. 이는 두 영상사이의 최소거리에 기반한 방법이며, 제안된 방법에서는 구해진 거리 그 자체보다는 이 거리의 분포로부터 최적 거리를 계산한다. 구해진 거리 분포 함수로부터 최종적인 두 영상의 유사도는 비퍼지화 추론을 이용하여 계산되어진다. 제안한 방법을 실제 문제에 적용하여 그 우수성을 검증하였다.

  • PDF