• Title/Summary/Keyword: 퍼지결합

Search Result 255, Processing Time 0.019 seconds

Self-Limiting Growth of ZnO Thin Films and Substrate-Temperature Effects on Film Properties (자기제한적 표면반응에 의한 ZnO 박막성장 및 기판온도에 따른 박막특성)

  • Lee, D.H.;Kwon, S.R.;Lee, S.K.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.296-301
    • /
    • 2009
  • An inductively coupled plasma assisted atomic layer deposition(ICP-ALD) system has been constructed for the deposition of ZnO thin films, and various experiments of ZnO thin films on p-type Si(100) substrates have been carried out to find the self-limiting reaction conditions for the ICP-ALD system under non-plasma circumstances. Diethyl zinc[$Zn(C_2H_5)_2$, DEZn] was used as the zinc precursor, $H_2O$ as the oxidant, and Ar as the carrier and purge gas. At the substrate temperature of $150^{\circ}C$, atomic layer deposition conditions based on self-limiting surface reaction were successfully obtained by series of experiments through the variation of exposure times for DEZn, $H_2O$, and Ar. ZnO deposition was repeated at different substrate temperatures of $90{\sim}210^{\circ}C$. As a result, the thermal process window(ALD window) for ZnO thin films was observed to be $110{\sim}190^{\circ}C$ and the average growth rate was measured to be constant of 0.29 nm/cycle. Properties of the film's microstructure and composition(Zn, O, etc.) were also studied. As the substrate temperature increases, the crystallinity was improved and ZnO(002) peak became dominant. The films deposited at all temperatures were high purity, and the films deposited at high temperatures had the composition ratio between Zn and O closer to one of a stable hexagonal wurtzite structure.

Analysis of Performance Determinants of ODA in Technical and Vocational Education and Training (직업능력개발 ODA사업의 성과 결정요인 분석)

  • Lee, Sang-Chul;Ghang, Bong-Jun;Lee, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.499-508
    • /
    • 2017
  • For analyzing the performance determinants of ODA projects in a technical and vocational education and training, this research analyzed the performance determinants of effectiveness representing the direct benefit and impact representing the long-term development effects of ODA project using FsQCA. As a result, the effectiveness of ODA project is achieved when relevance, sustainability and impact are high, or relevance, impact and efficiency are high. The impact of ODA project is achieved when relevance, sustainability and effectiveness are high, or relevance, effectiveness and efficiency are high. Two solutions for achieving effectiveness and two solutions for achieving impact show equifinality. The core factors for achieving effectiveness are relevance and impact, and the core factors for achieving impact are relevance and effectiveness. Also sustainability and efficiency are substitutability. A single causal variable can not have an effect on the ODA performance, but combined more than three causal variables can have an effect on the ODA performance. Therefore this research verified that collectives of causal variables rather than single causal variable should be considered to achieve the performance of ODA project in technical and vocational education and training.

Usable Capacity for CO2 capture and storage in MOFs (금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구)

  • Park, Seoha;Oh, Hyunchul;Jang, Haenam
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.80-85
    • /
    • 2018
  • Usable capacity is one of the most important parameters for evaluating the performance of an adsorbent for $CO_2$ capture from flue gas streams. In the pressure swing adsorption (PSA) process, the usable capacity is calculated as the difference between the quantity adsorbed in flue gas at high pressure (ca. 20 bar) and the quantity adsorbed at lower purge pressure (ca. 2 bar). In this paper, two stereo-types of metal-organic framework (MOF) were evaluated as an promising adsorbent for $CO_2$ capture: flexible structured MOF (MIL-53) and MOF possessing strong binding sites (MOF-74). The results showed that a total $CO_2$ capture capacity is strongly related to the specific surface area and heat of adsorption, revealing high uptake in MOF-74. However, the usable capacity was more pronounced in MIL-53 due to a structural transition.

A Comparative Study of family gap in Welfare States :The Role of family policy and labor market structure (복지국가의 '자녀유무별 여성임금격차(Family gap)' 비교연구 : 가족정책과 노동시장구조의 영향을 중심으로)

  • Huh, Soo Yeon
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.2
    • /
    • pp.279-308
    • /
    • 2010
  • This study examines the association between family policies and family gap using data for 14 OECD countries. As family policies have different assumptions about women's roles and include variant sub-policies, this study identify two distinct family policies: 'employment support policy' to support women as employed workers and 'caregiving support policy' to support women as caregivers. Meanwhile, women's wage cannot be determined by the effect of 'only' family policy. Therefore, analysis model includes variant macro structure supposed to affect women's labor status and wage, like labor market structure, wage structure(compression), women's social status and economic status, and examines interaction effects between family policies and these labor market and social structures using Fuzzy-Set Qualitative Comparative Analysis (FSQCA). The FSQCA result shows that relatively low family gap is associated with the conjunctual causation of developed 'employment support policy' and compressed wage structure.

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.