• Title/Summary/Keyword: 팽창밸브

Search Result 134, Processing Time 0.024 seconds

A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle (코안다 효과를 이용한 제트 특성에 관한 연구)

  • Lee, Dong-Won;Lee, Sak;Kim, Byung-Ji;Kwon, Soon-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.706-713
    • /
    • 2007
  • The jet structure issuing from a conventional convergent nozzle of variable expansion rate is compared with the result from the nozzle of a constant expansion rate using a normal type annular slit. In experiments, to investigate the jet characteristics between the two cases of jet, the mean velocity of nozzle exit is fixed to be 90m/s, the pressures along the jet axis and radial directions are measured by a scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution obtained by calculation from the measured static and total pressures is compared. Also to obtain the highly stable and convergence jets, it is turned out that the flow through a nozzle of constant expansion rate using the Coanda effect with an annular slit is the most preferable than that case through variable expansion rate nozzle. Furthermore, it is found that the pressure drop along the nozzle for the constant expansion rate nozzle is small relatively against to the case of variable expansion rate nozzle.

The development of a GIS-based gas accident management system (GIS 기반의 가스사고 관리시스템 개발에 대한 연구)

  • Kim, Kye-Hyun;Kim, Tae-Il;Park, Tae-Og
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.97-105
    • /
    • 2002
  • Nowadays the gas utilities has been increasing constantly due to the expansion of the urban areas. The gas utility companies have adopted GIS technologies and been trying to computerize the management system for gas facilities to maintain up-to-dated information to forecast possible accidents and to minimize the casualties from the accidents. The major objective of this study is to develop a GIS-based gas accident management system which could facilitate early response and alternatives in the cases of the accidents. The system is able to provide the information for the pipes to be closed followed by selecting the location of the accident, and search all the relevant values connected to the location to provide all the information to minimize the casualties. In addition to that, the system can calculated the remaining amount of the gas in the pipes closed from the accident thereby providing more safer alternatives. In the future, more practical method needs to be made such as GPS-linked more integrated gas accident management system.

  • PDF

Performance Analysis of a Multi-type Inverter Heat Pump (멀티형 인버터 열펌프의 냉방성능해석에 관한 연구)

  • Kim, Y. C.;Park, G. W.;Youn, Y.;Min, M. K.;Choi, Y, D,
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2001
  • A system simulation program was developed for a multi-type inverter heat pump. Electronic expansion valve(EEV) was used to extend the capacity modulating range of the heat pump as expansion device. The program was also developed to calculate actual system performance with the building load variation with climate during a year. The performance variation of a multi-type hat pump with two EEV and an inverter compressor was simulated with compressor speed, capacity, and flow area of the EEV. As a result, the optimum operating frequency of the compressor and openings of the expansion device were decided at a given load. As compressor speed increased, he capacity of heat pump increased, the capacity of heat pump increased. Therefore flow area of EEV should be adjusted to have wide openness. Thus the coefficient of performance(COP) of the heat pump decreased due to increasement of compressor power input. The maximum COP point at a given load was decided according to the compressor speed. And under the given specific compressor speed and the load, the optimum openings point of EEV was also decided. Although the total load of indoor units was constant, the operating frequency increased as the fraction of load in a room increased. Finally ad the compressor power input increased, the coefficient of performance decreased.

  • PDF

Development of a Cycle Simulation Program for Multi-Airconditioning Systems using R410A (R410A를 사용하는 멀티에어컨 시스템을 위한 사이클 시뮬레이션 프로그램 개발)

  • Kim, Young-Jae;Park, In-Sub;Kim, Hak-Hee;Yoon, Baek;Gil, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.210-215
    • /
    • 2002
  • In this study, the computer program called Multi_Cycle, which simulates the steady-state performance (coefficient of performance, capacity, power consumption and etc.) of multi- airconditioning systems using R410A, was developed. In order to validate the simulation program, a series of case studies were carried out. The Multi_Cycle consists of several subroutines for simulating indoor units. outdoor unit, compressor, and expansion devices. and for estimating the thermodynamic and transport properties of the refrigerants and moist air. It would appear to be advantageous to use the Multi_Cycle for a performance analysis when considering various kinds of refrigerants and the complex operating conditions of each unit making up the multi-airconditioner cycle. Moreover, the Multi_Cycle would seem to be useful tool in optimizing a multi-airconditioning system and establishing economical and efficient operating conditions in the multi-airconditioner cycle. In the present study, the Multi_Cycle was programmed with Digital Visual Fortran for the main simulation code and Visual Basic for- the graphic user interface.

  • PDF

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Experimental Study on the Heating Performance of a $CO_2$ Heat Pump Water Heater (이산화탄소 급탕 열펌프의 난방 성능에 관한 실험적 연구)

  • Baek, Chang-Hyun;Lee, Eung-Chan;Kang, Hoon;Kim, Yong-Chan;Cho, Hong-Hyun;Cho, Sung-Wook
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.310-315
    • /
    • 2008
  • In this study, experimental study on the heating performance of a $CO_2$ heat pump water heater with a variation of operating conditions such as refrigerant charge amount, outdoor temperature, compressor frequency, EEV opening and water mass flow rate. Based on the test results, the optimum charge amount was 1800 g. At the water mass flow rates of 75, 85, 95 kg/hr, the water heating temperature was 62, 67, $74^{\circ}C$ and COP was 2.6, 2.8, 3.0, respectively. Besides, the water mass flow rate and compressor frequency were varied to maintain above the water heating temperature of $60^{\circ}C$ with the decrease of outdoor temperature. So, The compressor frequency increased beyond 65 Hz and the water mass flow rate was 45 kg/hr at the outdoor temperature of $-13^{\circ}C$, 65 kg/hr at $-8^{\circ}C$, 75 kg/hr at $-3^{\circ}C$ and 85 kg/hr at 2, $7^{\circ}C$. As the outdoor temperature decreased, the heating COP decreased by 2.5-39.8%.

  • PDF

Precise Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on PI and Feedforward Control (PI와 피드포워드 제어를 이용한 공작기계용 오일쿨러의 핫가스 바이패스 방식 정밀 온도 제어)

  • Jeong, Seok-Kwon;Byun, Jong-Yeong;Kim, Sang-Ho;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, the performances of speed and accuracy are enhanced in machine tools. The high speed of the machine tools usually causes harmful thermal displacements on the objects. To reduce the thermal displacements, machine tools generally adopt oil coolers with precise temperature control function. This study aims at precise control of oil outlet temperature in the oil coolers with hot-gas bypass manner based on PI control logic. The control system was designed for obtaining steady state error within ${\pm}0.1^{\circ}C$ and maximum overshoot with 0.8% even though abrupt disturbances are added to the system. We showed that the PI gains could be easily decided by numerical simulations using practical transfer function which got experiments. Also, transient characteristics could be improved significantly by reflecting the inlet temperature of an evaporator to the output of a controller feedforwardly considering periodic abrupt disturbances. Through some experiments, excellent control performances were established by the suggested control.

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.

A Evaluation Method for the Effectiveness of Anti-snore Pillow (코골이 방지 베개의 효율성 검증을 위한 방법)

  • Jee, Duk-Keun;Wei, Ran;Im, Jae-Joong;Kim, Hee-Sun;Kim, Hyun-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.545-554
    • /
    • 2011
  • In this study, the parameters of Polysomnography (PSG) test, such as total sleep time, snoring time, had been analyzed to evaluate the effectiveness of a developed anti-snore pillow. The developed anti-snore pillow is made up of two polyvinylidene fluoride (PVDF) vibration sensors, pumps, valves, and air bladders. The two PVDF sensors inside the pillow can acquire the sound signals and the algorithm was perfectly designed to extract snoring by removing unwanted noise accurately and automatically. Once the pillow recognizes snore, a pump inside the hardware activates, and a bladder under the neck area inside the pillow will be inflated. The PSG test was used and two volunteers were participated for the study. The parameters of the PSG results were analyzed to evaluate the effectiveness of the anti-snore pillow. The total sleep time of each volunteer was similar on each phase of test, but the snoring time and the longest snoring episode were significantly decreased with the use of anti-snore pillow. The overall results showed excellent possibilities for reducing snoring for the person who snores during sleep by using the anti-snore pillow. The effectiveness of the anti-snore pillow can be evaluated by the PSG test. Moreover, the relationship between each parameter of PSG test and the quality of sleep will be used for further researches.

  • PDF