• Title/Summary/Keyword: 팽윤거동

Search Result 105, Processing Time 0.03 seconds

pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels (글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동)

  • Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.299-304
    • /
    • 2005
  • There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

Effects of Mold Time on Swelling of Natural Rubber Sponge by 2-Step Foaming (2단발포에서 금형시간이 천연고무 스폰지의 팽윤에 미치는 효과)

  • Lee, Hwan-Kwang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.335-338
    • /
    • 2008
  • 2단발포에서 금형시간이 천연고무(NR) 스폰지의 팽윤에 미치는 효과를 검토하였다. Kneader와 Rollmill을 사용하여 NR컴파운드를 제조하고 높은 압력조건의 1차금형에서 부분가교시킨 후 대기압의 2차 금형에서 발포와 가교를 완성시켰다. NR스폰지의 겉보기밀도를 측정하고 주사전자현미경을 사용하여 셀구조를 관찰하였다. 얻어진 스폰지에 대하여 실온에서 톨루엔, 이소옥탄, 항공유에 의한 팽윤거동을 조사하였다. 1차금형시간이 증가하면 NR스폰지의 겉보기밀도가 증가하고 팽윤비가 감소하였다. 2차금형시간이 증가하면 NR스폰지의 겉보기밀도가 감소하고 팽윤비가 증가하였다. 용매의 접촉에 의한 NR 스폰지의 부피팽윤비를 높이기 위하여 금형에서 동시에 발생하는 발포제의 분해반응과 NR의 가교반응을 적절히 조절하는 것이 중요하다.

  • PDF

Swelling behavior Simulation Study of KJ-II Bentonite Buffer Blocks under Various Experimental Conditions (다양한 실험조건에 따른 경주 벤토나이트 완충재 블록의 팽윤 거동 해석)

  • Lee, Deuk-Hwan;Go, Gyu-Hyun;Lee, Gi-Jun;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.29-40
    • /
    • 2024
  • This study aimed to evaluate the swelling behavior characteristics of KJ-II buffer blocks by performing numerical analysis of swelling pressure measurement experiments using the nonlinear elasticity model of COMSOL Multiphysics. The analysis was conducted under boundary conditions that included isotropic constraints and water injection pressure, mirroring the experimental settings. Validation of the numerical model was achieved by comparing its outputs with experimental results. The validated model was then used to simulate swelling deformations under unconfined conditions and to analyze swelling pressure as influenced by dry density and the geometric shape of the buffer material. The results accurately represented the swelling deformation observed during the saturation process and demonstrated that swelling pressure increases with higher dry density. Moreover, simulations concerning the geometric shape of the buffer material indicated a markedly faster rate of pressure increase in U-shaped samples compared to cylindrical ones. Analysis suggested that stress manifested preemptively near the internal edges of U-shaped samples during saturation. To enhance the simulation's fidelity to actual buffer material behavior, further refinement of the analysis model using a nonlinear elasticity model is recommended.

Swelling Behaviors of Maleic Anhydride-Grafted EPDM by Treatment with Dichloroactic Acid (디클로로아세트산 처리에 따른 무수말레산-그래프트 EPDM의 팽윤 거동)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • Swelling behaviors of raw (Specimen-R) and compressed (Specimen-C) samples of maleic anhydride-grafted EPDM (MAH-g-EPDM) depending on the treatment with dichloroacetic acid were investigated. Structural characteristics of the samples were analyzed by nuclear magnetic resonance spectroscopy (NMR) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). When the samples were not treated with dichloroacetic acid, the swelling ratio of Specimen-R was greater than that of Specimen-C by about twice and the swelling ratio change was negligible though the process of swelling and drying was repeated. When the samples were treated with dichloroacetic acid, the first swelling ratios were increased but the second ones were decreased. For the Specimen-C, the swelling ratio of the sample without the dichloroacetic acid treatment and the second swelling ratio of the sample treated with dichloroacetic acid were nearly the same. However, for the Specimen-R, the second swelling ratio of the sample treated with dichloroacetic acid was strikingly lower than that of the sample without the dichloroacetic acid treatment. The swelling ratio change according to the dichloroacetic acid treatment was explained by dissociation of the existing crosslinks and formation of new crosslinks.

Morphology and Swelling Behaviors of PVA/Gelatin Blend Membranes Prepared Under High Electric Field (고전장하에서 제조된 PVA/Gelatin 블렌드막의 구조와 팽윤거동)

  • Huh, Yang-Il;Yun, Hyung-Ku
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.563-567
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA) and gelatin (GEL) blend membranes were prepared by solution casting method under a high electric field. SEM observation of the membrane showed that gelatin rich domains were elongated and oriented to the direction of the applied electric field in PVA matrix. This can be attributed to the electrostatic emulsifying effects due to a reduction in interfacial tension. In addition, it was observed through WAXD and swelling measurements that the degree of crystallinity of membranes increased with applied electric field strength. This may be interpreted to be caused by the orientation effect of GEL domains in the blend membrane, and the self-annealing effect due to some heat generated from high electric field during casting.

Swelling Behavior of Low Toxic Absorbent Based on Biopolymer (생물고분자로 이루어진 저독성 흡수제의 팽윤거동)

  • Jung, Jin Hee;Kim, Jin;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • In this study, hydrogels with fast swelling and high absorbent properties were prepared using biopolymers approved as a food additive and their swelling properties were characterized. To improve the swelling properties of conventional hydrogels, we formed gas bubbles using a foaming agent in the process of preparing hydrogels and characterized in terms of equilibrium swelling ratio, swelling kinetics and cytotoxicity. In particular, alginate hydrogels observed by a digital microscope have an open-pore channels structure with the sizes of hundreds micrometers. Also, the cell viability of all hydrogels were found to be much higher than that of poly(acrylic acid).

A Comprehensive Swelling Model of Silicide Dispersion Fuel for Research Reactor (연구로용 우라늄실리사이드 분산형 핵연료의 팽윤모델)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.40-51
    • /
    • 1992
  • One of the important irradiation performance characteristics of the silicide dispersion fuel element in research reactors is the diameteral increase resulting from fuel swelling. This paper, will attempt to develop a physical model for the fuel swelling, DFSWELL, by analyzing the basic irradiation behaviours and some experimental evidences. From the experimental evidences, it was shown that the volume changes in irradiated U$_3$Si-Al were strongly dependent on temperature and fission rate. The quantitative-amount of swelling for silicide fuel is estimated by considering temperature, fission rate, solid fission product build-up and gas bubble behavior. The swelling for the silicide fuel is comprised of three major components : i ) a volume change due to the formation of an interfacial layer between the fuel particle and matrix. ii ) a volume change due to the accumulation of gas bubble nucleation iii ) a volume change due to the accumulation of solid fission products The DFSWELL model which takes into account the above three major physical components predicts well the absolute magnitude of silicide fuel swelling in accordance with the power histories in comparison with the experimental data.

  • PDF

Cholesteric Gels form Hydroxypropyl Cellulose(HPC) : Effect of Molecular Characteristics of HPC and Crosslinking Agent on Cholesteric Pitch and Swelling Behavior (Hydroxypropyl Cellulose (HPC)를 이용하여 제조한 Cholesteric Gels : HPC와 가교제의 분자특성이 Cholesteric Pitch와 팽윤거동에 미치는 영향)

  • Kim, Kyung-Hee;Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • The crosslinked films retaining cholesteric liquid-crystalline order were prepared by casting the liquid crystalline solutions of hydroxypropyl cellulose (HPC) in methanol with the two kinds of aliphatic dicarboxylic acid chlorides (succinyl chloride and suberoyl chloride). The temperature dependence on the cholesteric pitch of the crosslinked films and the swelling behavior of the films in both water and methanol were investigated. The films displayed fingerprint patterns charateristic of cholesteric liquid-crystalline phase, and their pitches, as well as HPC itself, increased with temperature. However, the pitch of all crosslinked samples was much greater than that of HPC at the same temperature and increased with increasing concentration and chain length of the crosslinker. The crosslinked samples exhibited an anisotropic swelling in both solvents. The degree of anisotropy slightly depended on the solvent and crosslinker species, but hardly on the crosslinker concentration investigated.

  • PDF

Alkali swelling characteristics of wood elements (목재 구성세포의 알칼리 팽윤 특성)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • To elucidate the behaviors of alkali swelllng of woods. the dimensional change in cross section of cell elements of four major Korean woods during alkali swelling were examined by an optical microscory, an imaging analysis method and an X-ray diffrartion During alkali swelling, tracheid diameter of Larix kaempferi wood showed greater swelling property than that of Pinus koraiensis wood, and the cell wall swelled highly over 10% sodium hydroxide solution treatment. The radial diameter of vessel elements in earlywood shrunk, but it swelled slightly in tangential direction. When treated with 5% NaOH, the wall thickness of wood fiber increased about three times over the original one. The thickness of cell wall in all elements and the diameter of wood fiber and tracheid showed almost isotropic shrinkage. The diameter of cell elements during the mercerization process decreased, but cell wall thickness Increased. Crystal transformation of cellulose in wood was not occurred by alkali treatments. but relative crystallinity and crystallite width of the woods increased slightly. Consequently, it was demonstrated that the swelling properties of woods were dependant on wood species, cell elements and alkali concentration.

  • PDF