Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.4.478

Swelling Behavior of Low Toxic Absorbent Based on Biopolymer  

Jung, Jin Hee (Department of Advanced Chemicals and Engineering, Chonnam National University)
Kim, Jin (Department of Advanced Chemicals and Engineering, Chonnam National University)
Lee, Ki-Young (Faculty of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University)
Publication Information
Polymer(Korea) / v.37, no.4, 2013 , pp. 478-485 More about this Journal
Abstract
In this study, hydrogels with fast swelling and high absorbent properties were prepared using biopolymers approved as a food additive and their swelling properties were characterized. To improve the swelling properties of conventional hydrogels, we formed gas bubbles using a foaming agent in the process of preparing hydrogels and characterized in terms of equilibrium swelling ratio, swelling kinetics and cytotoxicity. In particular, alginate hydrogels observed by a digital microscope have an open-pore channels structure with the sizes of hundreds micrometers. Also, the cell viability of all hydrogels were found to be much higher than that of poly(acrylic acid).
Keywords
fast swelling; high absorbent; biopolymer; low cytotoxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. B. Guiseley, N. F. Stanley, and P. A. Whitehous, Carrageenan in handbook of watersoluble gums and resins, McGraw-hill, New York, 1980.
2 R. K. Richardson and F. M. Goycoolea, Carbohydr. Polym., 24, 233 (1994).
3 M. Axelos, C. Garnier, J. F. Thibault, and C. Renard, Progress in Biotechnology, 14, 35 (1996).   DOI
4 P. F. Liu, M. L. Zhai, J. Q. Li, J. Peng, and J. L. Wu, Radiat. Phys. Chem., 68, 771 (2003).   DOI   ScienceOn
5 S. K. Bajpai, M. Bajpai, and L. Sharma, J. Macromol. Sci. Pure Appl. Chem., 43, 507 (2006).   DOI   ScienceOn
6 P. Sriamornsak and R. A. Kennedy, J. Pharmaceutics, 434, 72 (2006).
7 T. Mosmann, J. Immunol. Methods, 65, 55 (1983).   DOI   ScienceOn
8 J. Theil and G. Maurer, Fluid Phase Equilibria, 165, 224 (1999).
9 P. Eiselt, J. Yeh, R. K. Latvala, L. D. Shea, and D. J. Mooney, Biomaterials, 21, 1921 (2000).   DOI   ScienceOn
10 P. Atkins and J. D. Paula, Physical Chemistry, Oxford University, New York, p 648 (2010).
11 B. Singh and L. Pal, J. Eur. Polym., 44, 3222 (2008).   DOI   ScienceOn
12 J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, New York, p 377 (1968).
13 E. R. Morris, D. A. Rees, and C. Robinson, J. Molecular Biology, 138, 349 (1980).   DOI
14 T. Alfrey, E. F Gurnee, and W. G. Lloyd, J. Polym. Sci., Part C, 12, 249 (1966).
15 P. L. Ritger and N. A. Peppas, J. Contr. Rel., 5, 37 (1987).   DOI   ScienceOn
16 B. S. Kim, Korean Chem. Eng. Res., 43, 299 (2005).
17 W. J. Kim, V. N. M. Rao, and C. J. B. Smith, J. Food Sci., 43, 572 (1978).   DOI
18 M. Alonso-Mougan, F. Meijide, A. Jover, E. Rodriguez-Nunez, and J. Vazquez-Tato, J. Food Eng., 55, 123 (2002).   DOI   ScienceOn
19 P. Sriamornsak and R. A. Kennedy, J. Pharmaceutics, 358, 205 (2008).   DOI   ScienceOn
20 H. Omidian, J. G. Rocca, and K. Park, J. Contr. Rel., 102, 3 (2005).   DOI   ScienceOn
21 R. A. Gemeinhart, H. Park, and K. Park, Polym. Adv. Technol., 11, 617 (2000).   DOI   ScienceOn
22 S. G. Kang, Polymer Science and Technology, 13, 4 (2002).
23 W. L. Nelson and L. H. Cretcher. J. Am. Chem. Soc., 51, 1914 (1929).   DOI
24 U. Zimmermann, G. Klock, K. Federlin, K. Haning, M. Kowaslski, R. G. Bretzel, A. Horcher, H. Entenmann, U. Siebers, and T. Zekorn, Elecrophoresis, 13, 269 (1992).   DOI   ScienceOn