• Title/Summary/Keyword: 팬터그래프

Search Result 56, Processing Time 0.022 seconds

Analysis of Effect of Pantograph Cover on the Current Collection Quality of High Speed Train using Real Train Experiment (실차시험을 통한 팬터그래프 커버가 고속열차의 집전성능에 미치는 영향에 대한 분석)

  • Oh, Hyuck Keun;Kim, Seogwon;Cho, Yong-hyun;Kwak, Minho;Kwon, Sam Young
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • The contact force characteristic between the pantograph and the catenary wire represents the current collection quality of trains; it should be precisely controlled under international standard. Recently, a noise reduction cover has been installed around the pantograph of high speed trains. However, little study on the contact force by the pantograph cover has been conducted. In this study, the impact on the current collection performance of the pantograph cover was analyzed by dynamic contact force measurement using a next generation high speed train (HEMU-430X). As a result, it was confirmed that the attachment of a pantograph cover could lower the mean contact force by approximately 50N at 300km/h. In addition, the pure difference of the average contact force by the presence of pantograph cover, except for the static pressure, was measured and found to be up to 110N at 300km/h. It was also found that the standard deviation of the contact force of 3~5N could be changed by use of a pantograph cover.

Noise Contribution Analysis of Pantograph Using Real Train Experiment (실차시험을 이용한 팬터그래프의 소음기여도 분석)

  • Oh, Hyuck Keun;Noh, Hee-Min;Kim, Jun-Kon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.271-279
    • /
    • 2016
  • Pantograph aerodynamic noise is a major cause of noise that occurs when a train is traveling at high speeds. In this study, in order to analyze the contribution of pantograph aerodynamic noise, real train tests using HEMU-430X were carried out. In order to analyze the frequency characteristic of the noise of the pantograph in an actual vehicle, a sound field visualization has been carried out using a 144-channel microphone array at train speeds of 350 and 400km/h. As a result, it was confirmed that the low frequency noise in the 250~400Hz bandwidth provides the main contribution to the pantograph noise. And, in order to estimate the noise contribution of the pantograph, the noise level difference between cases in which the pantograph is ascending and those in which it is descending were compared in single microphone experiments. The frequency analysis in the single microphone tests showed that the bands of 315~400Hz and 1000~1250Hz are the main frequency characteristics of pantograph noise. These results show quite good agreement with those of previous studies and with results of sound field visualization.

Development of Catenary Arc Detection System (전차선 아크 검측 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Cho, Seong-Jae;Moon, Chul-Yi;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Catenary (Overhead Contact Lines) and Pantograph are used to transmit electrical energy to electric railways. An Arc occurs by unstable contact between catenary and pantograph during electric railways operation, which causes malfunctioning or even an accident. Therefore, to prevent a arc or electric contact loss are required arc detection systems with catenary maintenance capability. This paper describes developing of catenary arc detection system using photo detector in order to detect arc incidence in a indirect way. This developed system can also achieve Video-recordings and environmental conditions such as wire voltage/current, pantograph height, speed, position of electric railways, and temperature/humidity. This system have been evaluated at the section that bounds for dongdaegu from seoul. From the experimental results, the occurrence of arc and intensity of arc are mainly effected by wire voltage/current, pantograph height and speed of electric railways.

Design of CFRP-Metal Hybrid Pantograph Upper-arm (탄소섬유 복합재료-금속 하이브리드 팬터그래프 상부암 설계)

  • Jeon, Seung-Woo;Han, Min-Gu;Chang, Seung-Hwan;Cho, Yong-Hyeon;Park, Chul-min
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.327-332
    • /
    • 2015
  • In this research, a parametric study was carried out to design a metal-carbon fiber reinforced plastics (CFRP) hybrid pantograph for weight reduction of high speed train (KTX). To design a light-weight and high-stiffness pantograph, some parts of the original steel upper arm was replaced by CFRPs with appropriate stacking sequences. For the parametric study, steel was replaced by aluminium considering structure stiffness and weight of hybrid upperarm of a pantograph. Finite element analysis (FEA) was performed for checking the structure stiffness with varying design parameters. Static vertical load stiffness and weight changing ratio were derived from real CX-PG pantograph model analyses. From the FEA results, the geometries of high-stiffness, light-weight pantograph have been suggested.

A Real-scale Wind Tunnel Testing on a Pantograph for High-speed Train to Assess the Aerodynamic Characteristics (고속철도차량용 팬터그래프의 공력특성 평가를 위한 실모형 풍동시험)

  • Kwon, Hyeok-Bin;Cho, Young-Hyeon;Lee, Ki-Won;Kim, Ki-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.732-737
    • /
    • 2009
  • Wind tunnel testing on the real-scale pantograph for high-speed train has been conducted to investigate the aerodynamic characteristic of the pantograph at high-speed. The mid-scale subsonic wind tunnel of Korea Airforce Acamedy with 3.5m width, 2.45m height, and 8.8m length test section has been employed. The test model has been supported above 50cm height from the bottom of test section using vertical strut to eliminate the boundary layer generated from the bottom of the test section. The height of the pantograph has been varied in three cases, in both of the normal running and reverse running modes. The resultant lift forces of the pantograph to catenary system in all the cases have been measured and the relation between the test conditions and the lift forces have been extensively analyzed.

Development of Kinematic Analysis Technique for Structural Design of Single Arm type Pantograph (싱글암형 팬터그래프 구조설계를 위한 기구해석기법 개발)

  • Jeong, Gyeong-Ryeol;Park, Su-Hong;Kim, Hwi-Jun;Bae, Jeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.610-618
    • /
    • 2001
  • Pantograph, which collects current from cartenary system, is one of the important parts of high-speed train. Kinematic analysis is one of the key technologies for pantograph design and includes joint trajectories, reaction forces, and the required moment of main shaft calculations. The kinematic analysis, however, is very complex and time-consuming process. In this study PC based pantograph kinematic analysis software using graphical user interface tool was developed for the easy evaluations of kinematic characteristics necessary in pantograph design process.

A Study on the Contribution of Exterior Devices to Running Resistance in High-Speed Trains (고속열차 외부장치에 의한 주행저항 기여도 연구)

  • Oh, Hyuck Keun;Kwak, Minho;Kwon, Hyeok-bin;Kim, Sang-soo;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • The contribution of exterior devices such as bogie fairings and pantographs to running resistance was estimated on the basis of coasting tests at up to 350 km/h with the help of the Korean Next Generation High speed train (HEMU-430X). In order to assess the reduction of air resistance by nose car's bogie fairing, coasting tests were conducted with a removable bogie fairing at various speed ranges. And, the contribution of the pantograph to air resistance was also estimated with coasting tests that include the pantograph's rising and descent modes. The linear regression method was used to examine decelerations from time-velocity data and the equation of resistance to motion is proposed from the deceleration data. From the aerodynamic term of the equation of resistance to motion, the contribution to air resistance by nose car's bogie fairing and pantograph was estimated. The results show that the air resistance was reduced by about 3.8% by the nose car's bogie fairing. And, the 3.9% increase of air resistance by the pantograph (open knee mode) has been found.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

INVESTIGATION FOR THE AERODYNAMIC CHARACTERISTICS OF HIGH SPEED TRAIN PANTOGRAPH WITH COVER (커버 형상을 고려한 고속전철 팬터그래프 공력특성의 수치해석적 연구)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Kim, D.H.;Yoon, S.H.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.18-24
    • /
    • 2012
  • The aerodynamic performance of the pantograph on a high speed train was compared for different pantograph covers which are designed to block the aero-acoustic noise from the pantograph. For the study, two types of cover are designed: wedge and cone types. The lift force of pantograph with cover was compared with the force of pantograph only. The comparison clarified that the cone type cover increases the sideslip angle of the flow and decreases the lift force considerably. However, the wedge type cover changes the flow direction upward and increases the lift force of the pan head. This increment of lift force compensates the decrement of lift force caused by the blocking of the flow into the pantograph lower frame due to cover. Therefore, in case of the wedge type cover, the overall lift force changes slightly compared with the cone type cover.