• Title/Summary/Keyword: 패션 AI

Search Result 49, Processing Time 0.023 seconds

Modeling Metaverse Avatars and K-Fashion Apparel 3D Production -Focus on Developing Styling Work with K-Designer Items- (메타버스 아바타 및 K-패션의류 3D 제작 모델링-K 디자이너 아이템을 활용한 스타일링 작업물 개발을 중심으로-)

  • Sojin Kim;Boyoung Kang
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.60-77
    • /
    • 2023
  • The scale of the industry utilizing the Metaverse platform is gradually growing around the world. Fashion brands are also starting to utilize the Metaverse platform as a new market to replace the next e-commerce platform by targeting new consumers, MZ generation, and even Alpha generation. In this study, a real K-fashion designer's outfit was made into a 3D outfit using CLO 3D program to express it in a new market, the Metaverse 3D platform. It was then compared with a real outfit. An avatar prototype was completed using Max program to simulate the 3D digital fashion outfit and produce an avatar through an optimization process. The 3D outfits showed the same level of results as the actual outfits in terms of fabric surface, material texture, drapability, overall outfit, details, and trimmings. In addition, we proposed a 2D work on total styling suggestion and modeling to secure data sets for future AI-based styling services. In conclusion, this study revealed that actual outfits and 3D outfits had the same results. It is significant that it can be a sample work to build a styling data set through styling suggestion and content production as a significant amount of styling DB construction will be required before AI styling automation services.

Price Fairness Perception on the AI Algorithm Pricing of Fashion Online Platform (패션 온라인 플랫폼의 AI 알고리즘 가격설정에 대한 가격 공정성 지각)

  • Jeong, Ha-eok;Choo, Ho Jung;Yoon, Namhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.5
    • /
    • pp.892-906
    • /
    • 2021
  • This study explores the effects of providing information on the price fairness perception and intention of continuous use in an online fashion platform, given a price difference due to AI algorithm pricing. We investigated the moderating roles of price inequality (loss vs. gain) and technology insecurity. The experiments used four stimuli based on price inequality (loss vs. gain) and information provision (provided or not) on price inequality. We developed a mock website and offered a scenario on the product presentation based on an AI algorithm pricing. Participants in their 20s and 30s were randomly allocated to one of the stimuli. To test the hypotheses, a total of 257 responses were analyzed using Process Macro 3.4. According to the results, price fairness perception mediated between information provision and continuous use intention when consumers saw the price inequality as a gain. When the consumers perceived high technology insecurity, information provision affected the intention of continuous use mediated by price fairness perception.

Automated Clothing Analysis System through Image Analysis (이미지 분석을 통한 자동화 의류 분석 시스템)

  • Choi, Moon-hyuk;Lee, Seok-jun;Lee, Hak-jae;Kim, So-yeong;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.313-315
    • /
    • 2019
  • Although Korea's fashion market has negative growth, it has been growing again since 2018. This phenomenon means that people are becoming more interested in fashion. As interest in fashion grows, people visit various community sites for reference to find a suitable coordination for themselves. Most community sites, however, are manually categorizing each garment. Not only do these tasks take a lot of time, but they also make it difficult to search for multiple clothing at the same time. In other words, I can't choose what I want at the same time, and if I choose what I want, I have to look at what the model is wearing and refer to it. The problem with this may not help because the coordination in which the model provided is worn is more likely to be the one that the user does not want. In this paper, when the image is uploaded to improve the problem, the clothing is analyzed with AI analysis model and automatically classified and stored. Therefore, not only can you search for one clothes in the existing way, but you can also search for multiple clothes at the same time. The service is expected to allow more people to easily find and refer to the code for themselves.

  • PDF

A study on the digital transformation strategy of a fashion brand - Focused on the Burberry case - (패션 브랜드의 디지털 트랜스포메이션 전략에 관한 연구 - 버버리 사례를 중심으로 -)

  • Kim, Soyoung;Ma, Jin Joo
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.5
    • /
    • pp.449-460
    • /
    • 2019
  • Today, the fashion business environment of the 4.0 generation is changing based on fashion technology combined with advanced digital technologies such as AI (Artificial Intelligence), big data and IoT (Internet of Things). "Digital Transformation" means a fundamental change and innovation in a digital paradigm including corporate strategy, organization, communication, and business model, based on the utilization of digital technology. Thus, this study examines digital transformation strategies through the fashion brand Burberry. The study contents are as follows. First, it examines the theoretical concept of digital transformation and its utilization status. Second, it analyzes the characteristics of Burberry's digital transformation based on its strategies. For the research methodology, a literature review was performed on books and papers, aligning with case studies through websites, social media, and news articles. The result showed that first, Burberry has reset their main target to Millennials who actively use mobile and social media, and continues to communicate with them by utilizing digital strategy in the entire management. Second, Burberry is quickly delivering consistent brand identity to consumers by internally creating and providing social media-friendly content. Third, they have started real-time product sales and services by using IT to enhance access to brands and to lead consumers towards more active participation. In this study, Burberry's case shows that digital transformation can contribute to increased brand value and sales, keeping up with the changes in the digital paradigm. Therefore, the study suggests that digital transformation will serve as an important business strategy for fashion brands in the future.

Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis - (생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로-)

  • Jinho Ahn;Wookwhan Jung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This research aims to investigate methods of leveraging generative artificial intelligence in service sectors where consumer sentiment and experience are paramount, focusing on minimizing hallucination phenomena during usage and developing strategic services tailored to consumer sentiment and experiences. To this end, the study examined both mechanical approaches and user-generated prompts, experimenting with factors such as business item definition, provision of persona characteristics, examples and context-specific imperative verbs, and the specification of output formats and tone concepts. The research explores how generative AI can contribute to enhancing the accuracy of personalized content and user satisfaction. Moreover, these approaches play a crucial role in addressing issues related to hallucination phenomena that may arise when applying generative AI in real services, contributing to consumer service innovation through generative AI. The findings demonstrate the significant role generative AI can play in richly interpreting consumer sentiment and experiences, broadening the potential for application across various industry sectors and suggesting new directions for consumer sentiment and experience strategies beyond technological advancements. However, as this research is based on the relatively novel field of generative AI technology, there are many areas where it falls short. Future studies need to explore the generalizability of research factors and the conditional effects in more diverse industrial settings. Additionally, with the rapid advancement of AI technology, continuous research into new forms of hallucination symptoms and the development of new strategies to address them will be necessary.

Search for the Education of High-Tech Emotional Textile and Fashion (하이테크 감성 섬유패션의 교육 방향에 대한 모색)

  • Youn Hee Kim;Chunjeong Kim;Youngjoo Na
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • High-tech sensibility textile and fashion, in which consumers' emotions and various textile and fashion technologies are converged, is an important industrial group. It is important to develop the ability to apply in practice by gathering the creative by understanding other fields and exchanging ideas through interdisciplinary collaboration in the field of emotional engineering. Through interdisciplinary research and collaboration, talent must be nurtured of individuals who would lead the era of the 4th Industrial Revolution with the ability to empathize with others as well as the creative convergence-type intellectual ability necessary for the rapidly changing society. To determine content-creation methods, basic research is conducted. Additionally, this study investigates on the current status and educational process of the emotional textile-fashion industry worldwide. To nurture talents in the textile and fashion sensibility science, the basic contents are created to manage the knowledge that delivers sensibility science and the ICT related to this field, as well as in the intensive, PB-style conceptual design based on sensibility. The process from derivation of consumer emotion analysis and product development can be experienced through smart kit practice. Moreover, various methods are developed to set up intellectual property rights generated while developing ICT convergence products as start-ups. The study also covers new knowledge rights to develop emotional textile fashion.

Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN (비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현)

  • Seunga, Cho;Hayoung, Lee;Hyelim, Jang;Kyuri, Kim;Hyeon-Ji, Lee;Bong-Ki, Son;Jaeho, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • In this paper, we propose a detailed component image classification algorithm by fashion item for unstructured data retrieval in the fashion field. Due to the COVID-19 environment, AI-based online shopping malls are increasing recently. However, there is a limit to accurate unstructured data search with existing keyword search and personalized style recommendations based on user surfing behavior. In this study, pre-processing using Mask R-CNN was conducted using images crawled from online shopping sites and then classified components for each fashion item through CNN. We obtain the accuaracy for collar of the shirt's as 93.28%, the pattern of the shirt as 98.10%, the 3 classese fit of the jeans as 91.73%, And, we further obtained one for the 4 classes fit of jeans as 81.59% and the color of the jeans as 93.91%. At the results for the decorated items, we also obtained the accuract of the washing of the jeans as 91.20% and the demage of jeans accuaracy as 92.96%.

Development of personalized clothing recommendation service based on artificial intelligence (인공지능 기반 개인 맞춤형 의류 추천 서비스 개발)

  • Kim, Hyoung Suk;Lee, Jong Hyuck;Lee, Hyun Dong
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.116-123
    • /
    • 2021
  • Due to the rapid growth of the online fashion market and the resulting expansion of online choices, there is a problem that the seller cannot directly respond to a large number of consumers individually, although consumers are increasingly demanding for more personalized recommendation services. Images are being tagged as a way to meet consumer's personalization needs, but when people tagging, tagging is very subjective for each person, and artificial intelligence tagging has very limited words and does not meet the needs of users. To solve this problem, we designed an algorithm that recognizes the shape, attribute, and emotional information of the product included in the image with AI, and codes this information to represent all the information that the image has with a combination of codes. Through this algorithm, it became possible by acquiring a variety of information possessed by the image in real time, such as the sensibility of the fashion image and the TPO information expressed by the fashion image, which was not possible until now. Based on this information, it is possible to go beyond the stage of analyzing the tastes of consumers and make hyper-personalized clothing recommendations that combine the tastes of consumers with information about trends and TPOs.

Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service (챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안)

  • Hyosun An;Sunghoon Kim;Yerim Choi
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.

Analysis of Meta Fashion Meaning Structure using Big Data: Focusing on the keywords 'Metaverse' + 'Fashion design' (빅데이터를 활용한 메타패션 의미구조 분석에 관한 연구: '메타버스' + '패션디자인' 키워드를 중심으로)

  • Ji-Yeon Kim;Shin-Young Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.549-559
    • /
    • 2023
  • Along with the transition to the fourth industrial revolution, the possibility of metaverse-based innovation in the fashion field has been confirmed, and various applications are being sought. Therefore, this study performs meaning structure analysis and discusses the prospects of meta fashion using big data. From 2020 to 2022, data including the keyword "metaverse + fashion design" were collected from portal sites (Naver, Daum, and Google), and the results of keyword frequency, N-gram, and TF-IDF analyses were derived using text mining. Furthermore, network visualization and CONCOR analysis were performed using Ucinet 6 to understand the interconnected structure between keywords and their essential meanings. The results were as follows: The main keywords appeared in the following order: fashion, metaverse, design, 3D, platform, apparel, and virtual. In the N-gram analysis, the density between fashion and metaverse words was high, and in the TF-IDF analysis results, the importance of content- and technology-related words such as 3D, apparel, platform, NFT, education, AI, avatar, MCM, and meta-fashion was confirmed. Through network visualization and CONCOR analysis using Ucinet 6, three cluster results were derived from the top emerging words: "metaverse fashion design and industry," "metaverse fashion design and education," and "metaverse fashion design platform." CONCOR analysis was also used to derive differentiated analysis results for middle and lower words. The results of this study provide useful information to strengthen competitiveness in the field of metaverse fashion design.