• Title/Summary/Keyword: 패리티비트

Search Result 79, Processing Time 0.026 seconds

An Anti Collision Algorithm using Parity Mechanism in RFID Systems (RFID 시스템에서 패리티 메카니즘을 이용한 충돌방지 알고리즘)

  • Kim, Sung-Soo;Kim, Yong-Hwan;Ahn, Kwang-Seon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.389-396
    • /
    • 2009
  • In RFID systems, identifying the tag attached to the subject begins with the request from a reader. When the reader sends a request, multiple tags in the reader's interrogation zone simultaneously respond to it, resulting in collision. The reader needs the anti collision algorithm which can quickly identify all the tags in the interrogation zone. We propose the Anti Collision Algorithm using Parity Mechanism(ACPM). In ACPM, a collision can be prevented because the tags which match with the prefix of the reader's request respond as followings; the group of tags with an even number of 1's in the bits to the prefix + 2nd bits responds in slot '0', while the group of tags with an odd number of 1's responds in slot '1'. The ACPM generates the request prefix so that the only existing tags according to the response in the corresponding slot. If there are two collided bits in tags, then reader identify tags by the parity mechanism. That is, it decreases the tag identification time by reducing the overall number of requests.

Modulation Code for Removing Error Patterns on 4-Level NAND Flash Memory (4-레벨 낸드 플래시 메모리에서 오류 발생 패턴 제거 변조 부호)

  • Park, Dong-Hyuk;Lee, Jae-Jin;Yang, Gi-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.965-970
    • /
    • 2010
  • In the NAND flash memory storing two bits per cell, data is discriminated among four levels of electrical charges. We refer to these four levels as E, P1, P2, and P3 from the low voltage. In the statistics, many errors occur when E and P3 are stored at the next cells. Therefore, we propose a coding scheme for avoiding E-P3 or P3-E data patterns. We investigate two modulation codes for 9/10 code (9 bit input and 5 symbol codeword) and 11/12 code (11 bit input and 6 symbol codeword).

Wyner-Ziv Bit Rate Control Method for Removing Feedback Channel of Distributed Video Coding System (분산 동영상 부호화 시스템에서 피드백 채널 제거를 위한 Wyner-Ziv 비트 전송량 제어 방법)

  • Moon, Hak-Soo;Lee, Chang-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.287-290
    • /
    • 2011
  • 분산 동영상 부호화 시스템에서는 복호기에서 움직임 보상 보간 기법을 이용하여 부가정보를 생성한다. 생성된 부가정보와 원 Wyner-Ziv 프레임간의 차이를 채널 부호로 오류 정정하게 되는데 이때 부호기에서는 복호기에서의 오류 정정을 위하여 패리티 비트인 Wyner-Ziv 비트를 복호기로 보내게 되고 복호기에서는 이 Wyner-Ziv 비트를 이용하여 Wyner-Ziv 프레임을 복원하는데 더 많은 Wyner-Ziv 비트가 필요할 경우 피드백 채널을 통해 Wyner-Ziv 비트를 요청하게 된다. 이때 부호기에서 조건부 엔트로피를 구할 수 있다면 이를 이용하여 Wyner-Ziv 비트 전송량을 제어함으로써 피드백 채널을 제거 할 수 있다. 이를 위해 부호기에서도 부가정보를 알아야하는데 복호기에서 사용하는 부가정보 생성 기법은 복잡도가 높기 때문에 사용할 수 없다. 본 논문에서는 부호기에서 간단한 부가정보를 생성하는 방법을 제안하고 분산 동영상 부호화 시스템에 적용하여 피드백 채널을 제거하였을 때의 성능을 분석하였다.

  • PDF

A Low Density Parity Check Coding using the Weighted Bit-flipping Method (가중치가 부과된 Bit-flipping 기법을 이용한 LDPC 코딩)

  • Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.115-121
    • /
    • 2006
  • In this paper, we proposed about data error check and correction on channel transmission in the communication system. LDPC codes are used for minimizing channel errors by modeling AWGN Channel as a VDSL system. Because LDPC Codes use low density parity bit, mathematical complexity is low and relating processing time becomes shorten. Also the performance of LDPC code is better than that of turbo code in long code word on iterative decoding algorithm. This algorithm is better than conventional algorithms to correct errors, the proposed algorithm assigns weights for errors concerning parity bits. The proposed weighted Bit-flipping algorithm is better than the conventional Bit-flipping algorithm and we are recognized improve gain rate of 1 dB.

Effects of LDPCA Frame Size for Parity Bit Estimation Methods in Fast Distributed Video Decoding Scheme (고속 분산 비디오 복호화 기법에서 패리티 비트 예측방식에 대한 LDPCA 프레임 크기 효과)

  • Kim, Man-Jae;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1675-1685
    • /
    • 2012
  • DVC (Distributed Video Coding) technique plays an essential role in providing low-complexity video encoder. But, in order to achieve the better rate-distortion performances, most DVC systems need feedback channel for parity bit control. This causes the DVC-based system to have high decoding latency and becomes as one of the most critical problems to overcome for a real implementation. In order to overcome this problem and to accelerate the commercialization of the DVC applications, this paper analyzes an effect of LDPCA frame size for adaptive LDPCA frame-based parity bit request estimations. First, this paper presents the LDPCA segmentation method in pixel-domain and explains the temporal-based bit request estimation method and the spatial-based bit request estimation method using the statistical characteristics between adjacent LDPCA frames. Through computer simulations, it is shown that the better performance and fast decoding is observed specially when the LDPCA frame size is 3168 in QCIF resolution.

Radiation-Induced Soft Error Detection Method for High Speed SRAM Instruction Cache (고속 정적 RAM 명령어 캐시를 위한 방사선 소프트오류 검출 기법)

  • Kwon, Soon-Gyu;Choi, Hyun-Suk;Park, Jong-Kang;Kim, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.948-953
    • /
    • 2010
  • In this paper, we propose multi-bit soft error detection method which can use an instruction cache of superscalar CPU architecture. Proposed method is applied to high-speed static RAM for instruction cache. Using 1D parity and interleaving, it has less memory overhead and detects more multi-bit errors comparing with other methods. It only detects occurrence of soft errors in static RAM. Error correction is treated like a cache miss situation. When soft errors are occurred, it is detected by 1D parity. Instruction cache just fetch the words from lower-level memory to correct errors. This method can detect multi-bit errors in maximum 4$\times$4 window.

A Modified Sum-Product Algorithm for Error Floor Reduction in LDPC Codes (저밀도 패리티 검사부호에서 오류마루 감소를 위한 수정 합-곱 알고리즘)

  • Yu, Seog-Kun;Kang, Seog-Geun;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.423-431
    • /
    • 2010
  • In this paper, a modified sum-product algorithm to correct bit errors captured within the trapping sets, which are produced in decoding of low-density parity-check (LDPC) codes, is proposed. Unlike the original sum-product algorithm, the proposed decoding method consists of two stages. Whether the main cause of decoding failure is the trapping sets or not is determined at the first stage. And the bit errors within the trapping sets are corrected at the second stage. In the modified algorithm, the set of failed check nodes and the transition patterns of hard-decision bits are exploited to search variable nodes in the trapping sets. After inverting information of the variable nodes, the sum-product algorithm is carried out to correct the bit errors. As a result of simulation, the proposed algorithm shows continuously improved error performance with increase in the signal-to-noise ratio. It is, therefore, considered that the modified sum-product algorithm significantly reduces or possibly eliminates the error floor in LDPC codes.

A Balancing Method to improve efficiency of Stereo Coding (스테레오 코딩의 효율화를 위한 밸런싱 방법)

  • Kim, Jong-Su;Choi, Jong-Ho;Lee, Kang-Ho;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2007
  • Imbalances in focus, luminance and color between stereo Pairs could cause disparity vector estimation error and increment of transmission data. If the distribution of errors in residual image is large, it may influence to lowering of compression performance. Therefore, in this paper, we propose an efficient balancing method between stereo pairs to reduce the effect. For this, we registrated stereo images using a FFT based method to consider the pixels in the occluded region, we eliminated the pixels of blocks which has large error of disparity vector estimation in balancing function estimation. The balancing function has estimated using histogram specification, local information of target image and residual image between stereo images. Experiments show that the proposed method is effective in error distribution, PSNR and disparity vector estimation. We expect that our method can be improving compression efficiency in stereo coding system.

  • PDF

Error Correcting Technique with the Use of a Parity Check Bit (패리티 검사비트를 이용한 새로운 오류정정 기술)

  • 현종식;한영열
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.137-146
    • /
    • 1997
  • The simplest bit error detection scheme is to append a parity bit to the end of a bit sequence. In this paper an error correction technique with the use of a parity bit is proposed, and the performance of the proposed system is analyzed. The error probability of the proposed system is compared with the output of computer simulation of the proposed system. It is also compared with the error probability of error at BPSK system, and the signal-to-noise ratio gain is showed.

  • PDF

Efficient Design of Structured LDPC Codes (구조적 LDPC 부호의 효율적인 설계)

  • Chung Bi-Woong;Kim Joon-Sung;Song Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.14-19
    • /
    • 2006
  • The high encoding complexity of LDPC codes can be solved by designing structured parity-check matrix. If the parity-check matrix of LDPC codes is composed of same type of blocks, decoder implementation can be simple, this structure allow structured decoding and required memory for storing the parity-check matrix can be reduced largely. In this parer, we propose a construction algorithm for short block length structured LDPC codes based on girth condition, PEG algorithm and variable node connectivity. The code designed by this algorithm shows similar performance to other codes without structured constraint in low SNR and better performance in high SNR than those by simulation