• Title/Summary/Keyword: 판 거동 모델

Search Result 179, Processing Time 0.02 seconds

Development of Multi-Purpose Satellite II with Deployable Solar Arrays: Part 2. Ground Deployment Experiments (다목적2호기 태양전지판의 전개시스템 개발: PART 2. 지상전개실험)

  • Heo,Seok;Gwak,Mun-Gyu;Kim,Yeong-Gi;Kim,Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.82-87
    • /
    • 2003
  • This research is concerned with ground experiments for satellite solar array deployment as well as the validation of theoretical modeling technique presented in the previous paper. We carried out the experiments on the strain energy hinge with stopper to investigate he buckling characteristics of the SEH, which affects the shape and the speed of the solar array deployment. The moment-angle diagram obtained from the experiments was later combined with the theoretical deployment model. This paper also presents the details of the ground experiments performed at the Korea Aerospace Research Institute(KARI) . It was found that the ground experimental results were in good agreement with the theoretical predictions thus validating the dynamic modeling technique.

Study the Estimation of the Number of Bridging Fibers of Multidirectional Glass/Epoxy Laminates Using the Acoustic Emission Signals (음향 방출 신호를 이용한 다방향 유리/에폭시 복합재 적층판의 가교된 섬유 수 추정에 관한 연구)

  • Hyun-Jun Cho;Seung-Ah Oh;In-Gul Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.316-324
    • /
    • 2024
  • This paper presents a study on estimating the number of bridging fibers in multidirectional glass/epoxy composite laminates using acoustic emission signals. DCB test was conducted for analyzing the fracture behavior of multidirectional composite laminates, and acoustic emission sensor was utilized to measure the elastic wave generated upon specimen fracture. For unidirectional composite laminates, the initial number of bridging fibers was estimated through reference paper and fiber volume fraction. To estimate the initial number of bridging fibers for multidirectional composite laminates, the relative ratio of acoustic emission signals was utilized. The estimated number of bridging fibers was applied to FEM, and the results of FEM showed good agreement with experimental results.

p-Version Finite Element Model of Cracked Thick Plates Including Shear Deformation under Flexure (휨을 받는 두꺼운 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, Chae Gyu;Woo, Kwang Sung;Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1289-1298
    • /
    • 1994
  • The new p-version crack model is proposed to estimate the stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level Up to a maximum value of 10. The stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Ultimate Analysis of RC Beam with Unbonded Prestressing CFRP Plate (비부착 CFRP 판으로 긴장된 RC 보의 극한해석)

  • Lee, Jae-Seok;Choi, Kyu-Chon;Park, Young-Ha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.249-252
    • /
    • 2008
  • A study for the nonlinear analysis method of RC(Reinforced Concrete) beams with unbonded prestressing CFRP plate is presented. The cross-section of RC beam element is idealized as an assemblage of concrete and reinforcing steel fibers in order to account for varied material properties within the cross-section of the element. The unbonded CFRP plate is modeled as a series of the CFRP plate segments each of which is linked to the RC beam element, but slips without any resistance to simulate the unbonded behavior of the CFRP plate. The stress of each CFRP plate segment is redistributed iteratively using the force equilibrium relationship at each common node until it reaches at the same stress level. To evaluate the validity of the proposed analysis method, the results of ultimate analysis of the reinforced concrete beams with unbonded prestressing CFRP plates are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well.

  • PDF

A Study on the Ultimate Strength Behavior for Ship Perforated Stiffened Plate (선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.141-146
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc. Because cutout's existence grow up in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, and, reasonable buckling strength about perforated stiffened plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method.

  • PDF

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior (보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

A Nonlinear Analysis of Cable Stayed Bridge including Sway Vibrational Effects using Multiple Cable Elements (다수 케이블요소를 사용한 사장교의 횡방향진동을 포함한 비선형 해석)

  • Seong, Ik-Hyun;Yoon, Ki-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.661-670
    • /
    • 2000
  • To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads, two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. Futhermore case of asymmetric traffic loading clustered in one direction are also considered to study the torsional response of the bridge. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF