• Title/Summary/Keyword: 판축기법

Search Result 8, Processing Time 0.029 seconds

Review in terms of the earthen wall stamped technique in the Three Kingdoms period (삼국시대 토성 판축기법 용어 검토)

  • SHIN Heekweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.38-53
    • /
    • 2022
  • In this article, I have summarized and reviewed the concepts and terms surrounding the stamped construction technique, focusing on earthen walls in the Three Kingdoms period. This is because confusion is caused by defining the nature of the earthen walls by using various concepts and terms for each researcher regarding the substance and construction method of the earthen walls. The stamped earth method is a representative ancient civil engineering or construction technique in which a frame is made of plates to form a fortress wall, a fence, and the base of a building, and then soil or sand is poured into it layer by layer and then stamped with a bat to make it solid. Therefore, in order to prove that the earthen wall was built by the stamped earth method, evidence such as a narrow plate, a column for fixing it, long horizontal and vertical wood pieces to support the narrow plate, and traces of pounding the soil must be detected. However, in Korea, there are very few cases where such evidence has been fully excavated, so it is necessary to agree on how strictly the standards for the stamped earth method will be applied. The terms related to the stamped technique mobilized for the construction of the earthen walls were explained with actual examples by dividing the terms related to the concept into terms related to the principle and unit of the stamped plate, and the specific stamped technology. In particular, in Pungnabtoseong Earthen wall, a variety of typical and diverse methods of building the ancient stamped earthen wall were identified so that decisive data could be secured to understand the principles and techniques of the stamped earthen wall. In the future, a more general understanding of the stamped technique will be possible only when more evidence related to it is found in relics other than Pungnabtoseong Earthen wall.

Construction Techniques of Earthen Fortifications in the Hanseong Period of Baekje Kingdom (백제 한성기 토성의 축조기술)

  • LEE, Hyeokhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.168-184
    • /
    • 2022
  • This paper examined the construction techniques of the earthen fortifications in the Hanseong Period of Baekje Kingdom, which has been researched most frequently among the Three Kingdoms. The construction processes of the Earthen Fortifications were reviewed and dividing into 'selection of location and construction of the base', 'construction of the wall', and 'finish, extension and repair'. The results show that various techniques were mobilized for building these earthen fortifications. Techniques which were adequate for the topography were utilized for reinforcing the base, and several other techniques were used for constructing the wall. In particular, techniques for wall construction may be clearly divided into those of the fill(盛土) and panchuk(版築) techniques. The fill method has been assumed since the 2000s to have been more efficient than the panchuk technique. This method never uses the structure of the panchuk technique and is characterized by a complex soil layer line, an alternate fill, use of 'earth mound(土堤)'/'clay clod(土塊)', and junctions of oval fill units. The fill method allows us to understand active technological sharing and application among the embankment structures in the period of the Three Kingdoms. The panchuk technique is used to construct a wall using a stamped earthen structure. This technique is divided into types B1 and B2 according to the height, scale, and extension method of the structure. Type B1 precedes B2, which was introduced in the late Hanseong Period. Staring with the Pungnap Earthen Fortification in Seoul, the panchuk technique seems to have spread throughout South Korea. The techniques of the fill and panchuk techniques coexisted at the time when they appeared, but panchuk earthen fortifications gradually dominated. Both techniques have completely different methods for the soil layers, and they have opposite orders of construction. Accordingly, it is assumed that both have different technical systems. The construction techniques of the earthen fortifications began from the Hanseong Period of Baekje Kingdom and were handed down and developed until the Woongjin-Sabi Periods. In the process, it seems that there existed active interactions with other nations. Recently, since studies of the earthen fortifications have been increasing mainly in the southern areas, it is expected that comparative analysis with neighboring countries will be done intensively.

A Study on the Construction method of Stamped earthen wall (판축토성(版築土城) 축조기법(築造技法)의 이해(理解) - 풍납토성(風納土城) 축조기술(築造技術)을 중심(中心)으로 -)

  • Shin, Hee-kweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.102-115
    • /
    • 2014
  • The stamped earth method is a typical ancient engineering technique which consists of in-filling wooden frame with layers of stamped earth or sand. This method has been universally used to construct earthen walls and buildings, etc. The purpose of this article is to understand the construction method and principles of the stamped earthen wall through analysis of various construction techniques of Pungnaptoseong Fortress(Earthen Fortification in Pungnap-dong). First of all, the ground was leveled and the foundations for the construction of the earthen wall were laid. The underground foundation of the earthen walls was usually constructed by digging into the ground and then in-filling this space with layers of mud clay. Occasionally wooden posts or paving stones which may have been used to reinforce the soft ground were driven in. The method of adding layers of stamped earth at an oblique angle to either side of a central wall is the most characteristic feature of Pungnaptoseong Fortress. Even though the traces of fixing posts, boards, and the hardening of earth - all signatures of the stamped earth technique - have not been identified, evidence of a wooden frame has been found. It has also been observed that this section was constructed by including layers of mud clay and organic remains such as leaves and twigs in order to strengthen the adhesiveness of the structures. The outer part of the central wall was constructed by the anti-slope stamped earth technique to protect central wall. In addition a final layer of paved stones was added to the upper part of the wall. These stone layers and the stone wall were constructed in order to prevent the loss of the earthen wall and to discharge and drain water. Meanwhile, the technique of cementing with fire was used to control damp and remove water in stamped earth. It can not be said at present that the stamped earth method has been confirmed as the typical construction method of Korean ancient earthen walls. If we make a comparative study of the evidence of the stamped earth technique at Pungnaptoseong Fortress with other archeological sites, progress will be made in the investigation of the construction method and principles of stamped earthen wall.

Interpretation of Construction Technique by Compositional Analysis of Soil Stratum with Basement at the Mireuksaji Stone Pagoda (미륵사지 석탑 축기부 토층의 조성분석을 통한 제작기법 해석)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Dong-Sik
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.237-253
    • /
    • 2012
  • The Mireuksaji stone pagoda is constructed Baekje Period in the 7th century which is located in Iksan, Korea. This stone pagoda designated by National Treasure No. 11 is the only remaining pagoda. This pagoda has lost the original form in part and the whole stonework wase dismantled. Work for the restoration is currently in progress. This study was divided into soil strata such as construct layer of the temple site, foundation layer of the pagoda basement, and construct layer of the stylobate by stratum to interpretation the skill of rammed earth and making techniques. The of physical, mineralogical and geochemical characteristics of soil samples were identified. Five pieces of soil in and around the Mireuksaji temple site was selected for the comparative study to interpretate the mutual homogeneity among soil stratum. As a result, artificial addition has not been identified in all soil samples using rammed earth. The soils used for the basement of the stone pagoda (construct layer of the temple site, foundation layer of the pagoda basement, construct layer of the stylobate) were confirmed to be the same origin as soil in and around Mireuksaji temple site. Thus these results indicate that the basement of the pagoda was constructed using soils in and around the Mireuksaji temple site without work as careful selection.

Disassembly and Reconstruction of Stone Pagoda Using 3-Dimensional Image Analysis : Case Study in Simgoksa Seven-storied Stone Pagoda (3차원 영상분석을 활용한 석탑의 해체와 재조립 : 심곡사칠층석탑 사례 연구)

  • Choi, Hee Soo;Lee, Chan Hee;Han, Seong Hee;Lee, Seong Min
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.561-570
    • /
    • 2016
  • This research was a technical case study for the authentic restoration of the seven-storied Simgoksa stone pagoda after disassembly and reconstruction using three-dimensional image analysis. During disassembly and reconstruction, the pagoda's properties were analyzed in terms of the overall modification and displacement of the pagoda. Distortion was minimized by ensuring structural stability during the reconstruction process. Also, the original site of the pagoda was examined in order to utilize it fully during rebuilding. Before reconstruction of the pagoda, moss and lichen on the stone surfaces were removed by scientific surface cleaning. The foundation of the pagoda was reinforced with rammed earth than was similar to the original foundation using a mixture of soil and quicklime. The results are expected to provide valuable data for the reconstruction of other stone pagodas.

A natural analog study on the cover-layer performance for near-surface LILW disposal by considering the tomb of historical age (역사시대 고분을 이용한 중저준위 방사성폐기물의 천층처분 덮개성능 자연유사연구)

  • Park Jin-Beak;Park Joo Wan;Kim Chang-Lak;Yang Si Eun;Lee Sun Bok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.279-291
    • /
    • 2005
  • To support the design concept and the performance assessment of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, a pioneering study is conducted for the tomb of historical age. Research status of the art are investigated and the characteristics of tomb cover are summarized based on the preservation status of historical remains. On-site soil samples are prepared and their unsaturated hydraulic conductivities are measured by an one-step outflow method. Visiting the excavation site of historical tomb and communication with Korean archeological society are required for the further understanding and for the extension to the radioactive waste disposal research.

  • PDF

Characteristics of the Ancient Tombs and Application to Cover Design of a Near-surface Disposal Facility : Literature Survey (삼국시대고분의봉분특징과천층처분시설처분덮개에활용: 고분의발굴문헌을중심으로)

  • Park Jin-Beak;Lee Ji-Hoon;Park Joo-Wan;Kim Chang-Lak;Yang Si-Eun;Lee Sun-Bok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.221-230
    • /
    • 2005
  • To support the design concept and performance evaluation of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, the pioneering study is conducted with the tomb of historical age. Research status of the art are followed and the characteristics of tomb cover are summarized based on the preservation of historical remains. Visiting the excavation site of historical tomb and communication with Korean archeological society is required for the further understanding and for the extension of radioactive waste disposal research.

  • PDF