• Title/Summary/Keyword: 판이론

Search Result 48, Processing Time 0.025 seconds

Analysis of Steel Bridge by means of Specially Orthotropic Plate Theory (특별직교이방성 판이론을 응용한 강교량의 해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams ar H-type. A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The results of application of this method to steel bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffiness on the natural frequency is rigorously investigated. According to numerical examination given in this paper the result by the plate theory is 2.43 times stiffer than of beam theory.

  • PDF

Wave Transmission Analysis of Co-planar Coupled Semi-infinite Mindlin Plate (동일 평면상에서 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.574-580
    • /
    • 2013
  • At high frequencies, the statistical approach such as statistical energy analysis(SEA) and energy flow analysis(EFA) has been applied for estimation of vibroacoustic responses of various built-up structures. The energy coupling relationship between finite coupled structures is required to estimate vibrational energetics of built-up structures. Mindlin plate theory includes the rotatory inertia and shear deformation effects which are dominant as frequency increases. In this paper, the wave transmission analysis is successfully performed for EFA of co-planar coupled Mindlin plates.

Finite Element Analysis and Evaluation of a Three-dimensional Plate Theory (삼차원 판이론의 유한요소해석)

  • 조한욱
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.147-160
    • /
    • 1995
  • Based on the weighted residual concept[4], a three-dimensional plate theory is derived using a Fourier series expansion of a dependent variable and a weighted residual approximation of the basic elasticity equations. The weighted residual equilibrium equations of the plate are expressed in terms of weighted displaced quantities, and the results are then interpreted by means of a potential energy functional. The potential energy expression is used to develop a finite element implementation. For illustrative purposes, the application of the theory to a strip plate is considered and two numerical examples of a cantilever and a simply-supported strip plate are studied.

  • PDF

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

A Study on the Effect of Transversal Warping In Thick Plate (두꺼운 판의 전단 Warping 영향에 대한 연구)

  • Lee, Sang-Gab;Choi, Won-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 1996
  • An enormous amount of efforts has been devoted to the development of finite elements for the bending problem of thick plates, especially based on Mindlin plate theory. Here, an approximate Constant Shear Angle Theory is usually used to take a transverse shear deformation of thick plate into consideration, which cannot be effectively considered the influence of transversal warping of cross-section with an increase of thickness. It might be the best way to represent the exact cross-sectional warping of the plate. The overall objective of this study is to develop a new formulation of plate including shear deformation and transversal warping, to perform extensive parametric studies comparing its results with those from Mindlin plate formulation, and to gain further insight into the influence of shear deformation and transversal warping of thick plate.

  • PDF

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

Higher Order Zig-zag Piezoelectric Plate Theory Under Thermo-electric-mechanical Loads (열-전기-기계 하중 하에서의 고차 지그재그 판이론)

  • Cho, Maeng-Hyo;Oh, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.426-431
    • /
    • 2000
  • A decoupled thermo-piezoelectric-mechanical model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness.

  • PDF

Nonlinear Vibration Analysis of Rotating Composite Plates Based on a Refined Plate Theory (개선된 판이론을 이용한 회전하는 복합재료 적층판의 비선형 진동해석)

  • 나형진;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.173-176
    • /
    • 1997
  • A refined plate theory including the effects of transverse shearing is used to predict the free vibration frequencies, mode shapes and stress distributions in spinning laminated composite plates. In this theory, the displacements are expressed by trigonometric series representation through the thickness. In the series for the displacements only the first few terms are retained. The model is validated by comparing the results for isotropic plates with those available in the literature.

  • PDF