• Title/Summary/Keyword: 파 산란 문제

Search Result 58, Processing Time 0.026 seconds

Characteristics of HPC(High-performance Computing)-based Parallel Processing on Electromagnetic Scattering Problems (전자파 산란 문제에서의 고성능 컴퓨팅(HPC) 기반 병렬 처리 특성)

  • Cho, Yong-Heui
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.37-38
    • /
    • 2017
  • 금속으로 이루어진 긴 선이나 구에 대한 전자파 산란 특성을 계산할 때, 산란 계산 속도를 개선하기 위해 사용하는 고성능 컴퓨팅(HPC) 기반 병렬 처리 특성을 제시한다. 산란 행렬 생성, 가우스 소거법, 산란파 계산 등으로 이루어진 전자파 산란 문제는 병렬 처리를 통해 계산 속도를 높일 수 있다. 산란 문제의 계산 절차를 분석하여 병렬화에 유리한 계산 작업을 분류한 후 OpenMP 기반 병렬화를 적용한다.

  • PDF

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Numerical Modeling of Elastic Wave Scattering in an Isotropic Medium Containing an Orthotropic Inclusion (직교이방성 함유체를 포함하는 등방성 기지에서의 탄성파 산란 수치해석 모델)

  • Lee, Jung-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.69-79
    • /
    • 2001
  • A volume integral equation method(VIEM) is applied for the effective analysis of elastic wave scattering problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only the Green's function for the unbounded isotropic matrix is Involved In their formulation for the analysis. nis new method can also be applied to general two-dimensional elastodynamic problems with arbitrary shapes and number of anisotropic inclusions. Through the analysis of plane elastodynamic problems in unbounded isotropic matrix with an orthotropic inclusion, it is established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions.

  • PDF

고주파 전자파의 해석 기법 및 응용

  • 김효태
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.47-54
    • /
    • 1991
  • 본 논문에서는 전자파 해석에 관련된 기존의 해석 기법들을 간략하게 비교, 검토하고 GTD / UTD를 기본으로하여 고주파 해석 기법에 관련된 몇가지 문제들을 다룬다. 전자파 해석이란 전자파의 복사(radiation), 산란(scattering) 및 결합(coupling)에 관련된 문제의 해석을의미 한다. 전자파 해석은 여러 목적을위해 응용되고 있으며 EMC / EMI문제의 분석 및 대책 수립에도 응용될 수 있다. EMC / EMI 문제의 근원은 전자파의 간섭(interference) 현상이다. Emitting source로부터 복사(radiation)되는 간섭파는 여러 경로를 통해서 receptor로 coupling된다. 일반적으로 emitter와 receptor사이에는 여러 복잡한 구조물이 산란체로 작용하고 있으므로, emitter와 receptor사이의 직접경로(direct path)를 통한 coupling과 함께 구조물에 의한 전자파의 반사 및 회절을 통한 간접경로(indirect path)의 coupling도 고려되어야 한다. 따라서 EMC / EMI문제는 자유공간(free space)상에 있는 antenna 사이의 송수신 문제보다 매우 복잡하고 정확한 couplin의 계 산에 적지않은 어려움이 있다. EMC / EMI대책수립은 일차적으로 coupling path의 차단을 통해서 가능하므로 전자 파의 coupling path의 분석과 전자파의 복사 및 산란 mechanism에 대한 해석이 필수적이다.

  • PDF

Analysis of Modulus and Phase of Resonance Scattered Elastic Waves from Cylindrical Fluid Scatterers (원통형 유체 산란체에 의한 공명 산란 탄성파의 진폭 및 위상 해석)

  • 임현준;홍기석;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.62-70
    • /
    • 2001
  • Based on the recently developed resonance scattering theory for elastic waves, a relationship between the stress components, which may be measured using ultrasonic transducers, of partial waves scattered from cylindrical fluid scatterer, cavity, and resonance scatterer has been derived. The computed resonance scattered stresses exhibit frequency behaviors similar to the corresponding scattering coefficients: particularly, abrupt changes in phase by 180°near the resonant frequencies. By studying the behavior of pressure in the fluid scatterer, the physics of the theory has been further understood. Using the method studied and developed in this paper, nondestructive characterization of fluid inclusions in elastic media is expected to become more reliable.

  • PDF

Nonlinear Diffraction of Incident Waves with Side-band Disturbances by a Thin Wedge (변조된 입사파의 쐐기에 의한 산란)

  • 지원식;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The nonlinear forward diffraction of a modulated wave train by a thin wedge has been studied analytically. Since the physical variables involved in the problem have vastly different scales, the multiple scale expansion method has been used to obtain an approximate solution. To simplify the problem. the wedge is assumed to be thin and the parabolic approximation is utilized. The wave evolution can be described by a kind of the cubic Schrodinger equation. which consists of the linear time evolution. the lateral dispersion and the nonlinearity. Numerical results indicate that the nonlinearity. which it defined by the ratio of the ratio of the incident wave to the wedge angle. governs the amplitude and the stability of diffracted waves. The instability of dirffracted waves becomes more pronounced as the nonlinearity increases and the modulation ratio decreases. It is also found that the stem waves. initially developed along the wedge. can not sustain for a long time.

  • PDF

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

Source Estimation in Near-field by 2-Dimensional EM Scattering (2차원 전자파 산란에 따른 근방계에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.59-60
    • /
    • 2014
  • Non-destructive technique to measure internal structure and constant distribution of material can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we considered 2-dimensional EM scattering problem. Incident wave source is estimated by using some measured information obtained from near-field solutions.

  • PDF

The Exact Formulation of the Green Integral Equation Applied to the Radiation-Diffraction Problem for a Surface Ship Advancing in Waves (파중 전진하는 선체에 의한 방사파-산란파 문제의 해법에 적용되는 Green 적분방정식의 정확한 도출)

  • 홍도천
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.23-28
    • /
    • 2000
  • The Green integral equation for the calculation of the forward-speed time-harmonic radiation-diffraction potentials IS derived. The forward-speed Green function presented by Brard is used and the correct free surface boundary condition for the Green function is imposed. The cause of the mistakes in the existing Green integral equation is also pointed out.

  • PDF

Analysis of Scattered Fields Using High Frequency Approximations (고주파수 근사 이론을 이용한 결함으로부터의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • This paper describes two different theories used to model the scattering of ultrasound by a volumetric flaw and a crack-like flaw. The elastodynamic Kirchhoff approximation (EKA) and the geometrical theory of diffraction (GTD) are applied respectively to a cylindrical cavity and a semi-infinite crack. These methods are known as high frequency approximations. The 2-D elastodynamic scattering problems of a plane wave incident on these model defects are considered and the scattered fields are expressed in terms of the reflection and diffraction coefficients. The ratio of the scattered far field amplitude to the incident wave amplitude is computed as a function of the angular location and compared with the boundary element solutions.

  • PDF