• Title/Summary/Keyword: 파일보강

Search Result 81, Processing Time 0.035 seconds

Three-Dimensional Numerical Analysis for Verifying Behavioral Mechanism and Bearing Capacity Enhancement Effect According to Tip Elements (선단 고정 지압구의 거동 메커니즘과 형상에 따른 지지력 증대효과 검증을 위한 3차원 수치해석)

  • Lee, Seokhyung;Kim, Seok-Jung;Han, Jin-Tae;Jin, Hyun-Sik;Hwang, Gyu-Cheol;Lee, Jeong-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.53-67
    • /
    • 2022
  • Micropiles are cast-in-place-type piles with small diameters. They are widely used for the foundation reinforcement of existing buildings and structures because this technique is easy to construct and economic. A base expansion structure is developed following the mechanism of radial expansion at the pile tip under compression. Numerical analysis, durability tests, and centrifuge tests have been conducted using the base expansion structure. In this study, three-dimensional numerical modeling was performed to describe the behavioral mechanism of the base expansion structure using steel bar penetration under compressive loading, and numerical analyses using centrifuge test conditions were performed for the comparative studies. Additionally, the base structure was modified based on the results of lab-scale analyses, and the bearing capacities of micropiles were compared using field-scale numerical analyses under various ground conditions.

Critical Buckling Characteristics of Micropiles Under Axial Loads (축하중을 고려한 마이크로파일의 임계좌굴특성)

  • Jeong, Hyeon-Sik;No, In-Soo;Lee, Yeong-Seang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.39-51
    • /
    • 2015
  • various soil conditions as its application to foundation retrofit works has increased. However, most of the domestic researches focused mainly on bearing behavior of Case-I and Case-II type micropiles, whereas structural verification research was insufficient in relation with bulking behavior in particular. In this respect, this study was perfomed to understand the critical buckling characteristics of micropiles under axial load with various steel bars and grout conditions. As a result, it was found that a critical buckling shear strength of a micropile increases for smaller diameter micropile and a critical buckling load decreases with a longer length in the condition under the critical buckling length. Also, a method to evaluate a buckling possibility and yield behavior under axial compressive load conditions is proposed.

An Experimental Study on the Behavior of T-type Modular Composite profiled Beams (T형 모듈단면 합성 프로파일보의 거동에 관한 실험적 연구)

  • Ahn, Hyung Joon;Lee, Seong Won;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.539-548
    • /
    • 2008
  • This study aims to determine the applicability of the previously published T-type modular profile beam in the manner of producing specimens designed specially for the said purpose, determining their bending and shear behaviors depending on the presence of shear reinforcement, and analyzing the results in comparison with the theoretical equation of plastic deformation. The modular profile beam contributes to bending and shear resistance with the addition of the profile to the form function, and enhances the molding performance through the modular concept. The experimental results showed that the TS series specimens with shear reinforcement have bending behaviors superior to those of the T series specimens without shear reinforcement, which suggests that the used shear reinforcement appropriately bears the shear force. However, it was considered that all the specimens except for the T1-1 specimen failed to have adequate bending performance because of the intermodular slipping caused by the shear failure of the bolts. It is expected that further studies on the T-type modular profile beam, in which shear connectors will be considered as a variable,be performed to develop optimal intermodular connection methods.

Short- and Long-term Load Carrying Capacity of Geogrid-encased Stone Column - A numerical investigation (지오그리드 감쌈 쇄석기둥 공법의 장.단기 하중 지지 특성 - 유한요소해석을 통한 고찰)

  • Lee, Dae-Young;Song, Ah-Ran;Kim, Sun-Bin;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.5-16
    • /
    • 2007
  • The stone column method is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquefaction resistance among others. Recently, geosynthetic-encased stone column approach has been developed to improve its load carrying capacity through increasing confinement effect. Although such a concept has been successfully applied in practice, fundamentals of the method have not been fully explored. This paper presents the results of an investigation on the load carrying capacity of geogrid-encased stone column using a series of 2D finite element analyses. A parametric study was then conducted for influencing factors such as effect of geogrid encasement, encasement length, geogrid strength, among others. The results of the analyses indicated improved short- and long-term load carrying capacity of the geogrid-encased stone column method has advantages over the conventional stone column method without encasing.

An Experimental Study on the Reinforcement Effect of Installed Micropile under Footing on Dense Sand (조밀한 모래지반의 기초하부에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee, Tae-Hyung;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.191-200
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of 100~300mm, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed under footing(concept of "structure supporting"). With the test results and soil deformation analysis, the reinforcement effect(relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is hoped to demonstrate the improvement of an efficiency and application in the design and construction of micropile.

Engineering Properties of PHC Pile Considering Replacement Ratio of Ground Granulated Blast-Furnace Slag and Curing Conditions (고로슬래그 미분말의 치환율 및 양생조건을 고려한 PHC파일의 공학적 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.439-446
    • /
    • 2018
  • The PHC pile has been increasingly used due to its implementation of the top-base method, which is advantageous in high penetration rate and bearing capacity reinforcement. Typically, when a PHC pile is manufactured, high-strength mixed materials are mainly used to enhance the compressive strength. However, recent studies have been conducted to utilize ground granulated blast-furnace slag (GGBS) in terms of economic efficiency. For this reason, this study manufactured PHC pile considering the replacement ratio and curing conditions of GGBS instead of high-strength mixed materials, and further investigated the engineering properties of the PHC pile. According to the experimental results, the compressive strength of GGBS-replaced PHC pile increased by steam curing, and particularly, PHC pile with 20% replacement of GGBS under $80^{\circ}C$ steam curing condition showed a compressive strength of approximately 84MPa. Furthermore, the experimental results confirmed that more hydration products were generated under the $80^{\circ}C$ steam curing condition than that under the $20^{\circ}C$ steam curing condition, which would affect the higher density of the PHC pile as well as the increase in the compressive strength.

A Study on the Data Fusion Method using Decision Rule for Data Enrichment (의사결정 규칙을 이용한 데이터 통합에 관한 연구)

  • Kim S.Y.;Chung S.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.291-303
    • /
    • 2006
  • Data mining is the work to extract information from existing data file. So, the one of best important thing in data mining process is the quality of data to be used. In this thesis, we propose the data fusion technique using decision rule for data enrichment that one phase to improve data quality in KDD process. Simulations were performed to compare the proposed data fusion technique with the existing techniques. As a result, our data fusion technique using decision rule is characterized with low MSE or misclassification rate in fusion variables.

The Numerical Analysis for Different Foundations Constructed by Footing and Pile (직접기초와 파일기초로 적용된 이질기초에 대한 수치해석적 평가)

  • Hwang, Eui-Suk;Jang, Kyung-Jun;Thak, Ki-Yoel;Lee, Jong-Sung;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.985-992
    • /
    • 2009
  • 대형 구조물의 기초 시공 시 구조물의 하부지반이 불균질하거나 경사진 지반 또는 일반토사와 암반이 혼재된 지지력이 급격히 변화하는 구간에서 시공되는 경우가 많으며 이와 같은 경우에는 경제적인 최적의 방안으로 직접기초와 말뚝기초를 혼용하여 사용하는 방안이 필요하다. 그러나 일반적으로 기초의 안정성 확보를 위해 보수적으로 말뚝기초를 적용하는 경우가 대부분이며 소규모의 아파트 기초현장에서는 부분적으로 이질기초가 적용되나 이에 대한 보강이나 안정성 검토는 형식적으로 이루어지는 경우가 대부분이다. 본 연구에서는 직접기초와 파일기초가 적용되는 이질기초에 대한 수치해석을 통하여 이질기초 적용 시 기초 및 하부지반에 대한 거동을 평가하여, 이질기초에 대한 적용가능성 여부 및 기초하부에서의 개략적인 거동에 대하여 고찰하고자 한다.

  • PDF

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.