DOI QR코드

DOI QR Code

Critical Buckling Characteristics of Micropiles Under Axial Loads

축하중을 고려한 마이크로파일의 임계좌굴특성

  • 정현식 (강호엔지니어링건축사사무소) ;
  • 노인수 (신세기건설주식회사) ;
  • 이영생 (경기대학교 토목공학과)
  • Received : 2015.07.13
  • Accepted : 2015.09.05
  • Published : 2015.09.30

Abstract

various soil conditions as its application to foundation retrofit works has increased. However, most of the domestic researches focused mainly on bearing behavior of Case-I and Case-II type micropiles, whereas structural verification research was insufficient in relation with bulking behavior in particular. In this respect, this study was perfomed to understand the critical buckling characteristics of micropiles under axial load with various steel bars and grout conditions. As a result, it was found that a critical buckling shear strength of a micropile increases for smaller diameter micropile and a critical buckling load decreases with a longer length in the condition under the critical buckling length. Also, a method to evaluate a buckling possibility and yield behavior under axial compressive load conditions is proposed.

근래 구조물 기초보강을 위한 마이크로파일공법의 적용사례가 점차 증가하고 있으며, 이에 따른 관련 연구가 다수 수행되고 있다. 그러나 국내 연구는 대부분 Case. I, II-Type의 지지거동에 국한되어 마이크로파일 자체의 구조적 검토에 대한 연구는 미미한 실정이다. 따라서 본 논문에서는 국내에서 주로 사용되는 마이크로 파일에 대한 각각의 강봉 및 그라우트조건에 따른 좌굴특성을 검토하였다. 검토결과 마이크로파일 직경이 작을수록 지반의 임계좌굴점착력($C_{ucr}$)는 증가하게 되며, 특히 임계좌굴길이($L_{cr}$) 이하에서는 마이크로파일 길이가 길수록 임계좌굴하중($P_{cr}$)이 감소함을 알 수 있었다. 또한 축하중을 받는 마이크로파일의 좌굴파괴와 압축파괴 가능성을 구분, 평가할 수 있는 방법을 제시하였다.

Keywords

References

  1. American Association of State Highway and Transportation Officials (2012), "LRFD Bridge Design Specifications", pp.6-82-6-93, 10-145-10-152.
  2. American Concrete Institute (2009), "Building Code Requirements for Structural Concrete", pp.115-121.
  3. American Petroleum Intitute (2000), "Recommended Practice for Planning Designing and Constructing Fixed Offshore Platforms", pp.64-66.
  4. Bergfelt, A. (1957), "The Axial and Lateral Load Bearing Capacity and Failure by Buckling of Piles in Soft Clay", Proc., 4th Int. Conf. on Soil Mechanics and Foundation Engineering, Vol.2, pp.8-13.
  5. Bhattacharya, S., Carrington T.M., and Aldridge. T.R. (2005), "Buckling Consideration in Pile Design", Frontiers in offshore Geotechnics, ISFOG 2005, London, pp.815-821.
  6. Bhattacharya, S., Madabhushi, S.P.G., and Bolton, M.D. (2004), "An Alternative Mechanism of Pile Failure in Liquefiable Deposits during Earthquakes", Geotechnique 54, No.3, pp.203-213. https://doi.org/10.1680/geot.2004.54.3.203
  7. Bjerrum, L. (1957), "Norwegian Experience with Steel Piles to Rock", Geotechnique, Vol.7, No.2, pp.73-96. https://doi.org/10.1680/geot.1957.7.2.73
  8. Cadden, A. and Gomez, J. (2002), "Buckling og Micropiles", Schnabel Engineering Associaties Report. West Chester, PA, pp.1-18.
  9. Davison, M. T. (1963), "Estimating Buckling Loads for Piles", Proc., 2nd pan-Amer. Conf. Soil Mechanics and Foundation Engineering, Vol.1, pp.351-371.
  10. Federal Highway Administration (2005), "Micropiles Design and Construction : Reference Manual", pp.2-1-2-10, 5-54-5-73.
  11. International Code Council, Inc. (2011), "Internationnal Building Code", pp.408-420.
  12. Korean Ministry of Land, Transport and Maritime Affairs (2010), Korean Highway Bridge Design Code, pp.3-10-3-18.
  13. Korean Steel Structure Design Code (2014), Korean Society of Steel Construction pp.89-95.
  14. Matlock, H. (1970), "Correlation for Design of Laterally Loaded Piles in Soft Clay", Proc., Offshore Technology Conf., Houston, Texas, Vol.123, pp.1049-1086.
  15. O'Neill, M.V. and S.M. Gazioglu (1984), "An Evaluation of p-y Relationships in Clays", A report to the API, PRAC 82-41-2, Houston, Texas.
  16. Reese, L. C. (1977), "Laterally Loaded Piles : Program Documentation", Journal of the Geotechnical Engineering Division, ASCE, Vol.4, pp.287-305.
  17. Reese, L. C. and Wang, S. T. (2000), "LPILE plus ver.4.0 technical manual", Ensoft Inc., Austin, Tex, pp.3-36-3-44.