• Title/Summary/Keyword: 파의 회절

Search Result 218, Processing Time 0.026 seconds

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF

Prediction of Wave Force on a Long Structure of Semi-infinite Breakwater Type Considering Diffraction (회절을 고려한 반무한방파제 형식의 장대구조물에 작용하는 파력 예측)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.424-433
    • /
    • 2015
  • In this study, the wave force distribution acting on a semi-infinite and vertical-type long structure is investigated considering diffraction. An analytical solution of the wave force acting on long structures is also suggested in this study. The wave forces on long structures are evaluated for monochromatic, uni-directional random, and multi-directional random waves. Diffraction effects in front of the breakwater and on the lee side of the breakwater are considered. The wave force on a long structure becomes zero when the relative length of the breakwater (1/L) is zero. The diffraction effects are relatively strong when the relative length of the breakwater is less than 1.0, and the wave forces decrease greatly for long structure when the relative length of the breakwater is larger than 0.5. Therefore, it is necessary to consider diffraction effects when the relative length of the breakwater is less than 1.0, and the relative length of the breakwater must be at least 0.5 in order to obtain a reduction of wave force on long structures.

Distribution of Wave Forces at Points on a Vertical Structure of Semi-Infinite Breakwater Considering Diffraction (회절을 고려한 반무한방파제 형식의 직립구조물에 작용하는 지점별 파력 분포)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.240-249
    • /
    • 2016
  • In this study, we investigated wave force distribution at points on a vertical structure of semi-infinite breakwater considering diffraction. Wave forces of monochromatic and random waves on a vertical structure are studied considering diffractions in front and lee side of the breakwater for non-breaking wave condition. We selected width of breakwater are 0 for reference condition. In monochromatic wave case, relative wave force becomes 0 on the head of the breakwater by acting incident wave force and diffracting wave force simultaneously and oscillating patterns of relative wave force occurs based on 1.0 as distance from the head increases. Relative wave force of monochromatic waves decreases as incident wave angle increases. Relative wave force of random waves is defined by using ratio of root mean square and wave force spectrum in this study. The case considering random phase of each wave components are compared to the case which don't consider random phase and both results are almost similar. Relative wave force of random waves is also 0 near the head of the breakwater likewise monochromatic wave. Oscillating pattern of relative wave force of random waves becomes relatively weaker for composition of each wave components as distance from the head increases.

Analysis of Ultrasound Synthetic Transmit Focusing Using Plane Waves (평면파를 이용한 초음파 합성 송신 집속 기법의 해석)

  • Lee, Jong Pil;Song, Jae Hee;Song, Tai-Kyong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.200-209
    • /
    • 2014
  • In this paper, we present a general model for synthetic transmit focusing method using plane waves (STF-PW) of which the properties are investigated through mathematical analysis and compared with those of the conventional focusing method. The analysis results show that STF-PW produces non-diffracting beams in the sense that their main lobe widths do not change with depth. We also present a method for synthesis of plane waves to obtain a desired main lobe width while preventing grating lobe generation and a method for broadening the region over which the non-diffracting property is maintained. The proposed model and analysis results were validated through computer simulations.

불규칙파의 굴절ㆍ회절 수치모형

  • 채장원;정신택
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.83-83
    • /
    • 1992
  • 풍파가 수심이 불규칙하고 조류 및 해류 등의 흐름이 존재하는 연안역을 전파해 갈 때 파고 및 파향이 굴절ㆍ회절 및 천수, 에너지 감쇠 효과 등에 의해 크게 변형된다. 이러한 현상은 연안역의 파랑변형 계산 및 퇴적물이동현상 분석에 매우 중요하다. 불규칙파의 스펙트럼 형태와 에너지의 방향 분산 정도에 따라 단순 규칙파 모델과의 계산치가 50-100%에 이르기도 한다.(중략)

  • PDF

Design and analysis of two-dimensional binary phase masks for the fabrication of two-and three-dimensional periodic structures (2차원 및 3차원의 주기적인 구조 제작을 위한 2차원 이진 위상마스크의 설계와 분석)

  • 김남식;원영희;고근하;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • Two-dimensional binary-phase diffraction gratings which can be employed to fabricate two- and three-dimensional periodic structures are designed and analyzed using rigorous coupled-wave analysis. These gratings serve as phase-masks which generate several diffracted waves from a normally incident beam and thus can produce a periodic interference pattern in space via nearfield holography. The properties of the diffracted beams can be controlled by varying the polarization and wavelength of the incident beam, surface-profile, groove depth and duty cycle of the mask. For the two-dimensional structure, optimum results can be obtained when the diffraction efficiency of the zero-order beam is minimized while that of the first-order maximized. On the other hand, when the diffraction efficiency of the zero-order is appreciable or even greater than other orders, we can obtain a variety of three-dimensional interference patterns which may be used to fabricate photonic crystals of tetragonal-body-centered and hexagonal structures in a submicron scale. scale.

  • PDF

Calculation of Diffraction Patterns for Incidence of Planewave on Both Sides of a Dielectric Wedge by Using Multipole Expansion (쇄기형 유전체의 양면에 평면파 입사시 다극전개를 이용한 회절패턴 계산)

  • Kim, Se-Yun;Ra, Jung-Woong;Shin Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.16-26
    • /
    • 1989
  • Diffraction patterns of electromagnetic fields for the incidence of E-polarized plane wave on both interfaces of an arbitrary-angle dielect wedge are obtained by sum of geometric optics term and the edge diffracted fields. The diffraction coefficients of the edge diffracted fields are evaluated by employing the physical optics approximation and then correcting its error with the multipole line source at the dielectric edge. For the wedge angle $120^{circ}$, the incident angle $60^{circ}$, the relative dielectric constant of the dielectric wedge, 2, 5, and 10, and the observation distance from the tip of the wedge, 5 and 10 wavelength, the diffraction coefficients and the diffraction patterns corresponding to geometric optics, physical optics, and the solution corrected by the multipole line source are plotted, respectively. While the corrected solutions presented in this paper are valid only in the far-field region, these asymptotic solutions show to satisfy the boundary condition on the dielectric interfaces.

  • PDF

Study on analytical solution of diffraction around breakwaters (방파제 주위에서 발생되는 회절현상에 대한 해석해의 고찰)

  • Kim, Min-Kyun;Lee, Chang-Hoon;Cho, Yong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.538-542
    • /
    • 2005
  • 본 연구에서는 Penney와 Price(1952)의 해석 해를 사용하여 반무한방파제, 양익방파제등에서 발생하는 회절현상에 대한 해석 해를 구하였다. 양익방파제가 경사지게 위치한 경우에도 중첩을 통하여 해석 해를 구할 수 있었으며, 이를 바탕으로 방파제의 위치와 입사파랑의 각도에 따른 각각의 경우에 대하여 해석 해를 구할 수 있다. 또한, 구조물에 입사된 파랑성분과 구조물의 폭만큼의 개구부를 갖는 양익방파제를 통과하는 회절파성분과 같게 표현될 수 있는 반사파성분을 서로 중첩시켜 구조물 전면부에서 발생되는 완전반사 및 부분반사현상에 대한 해석 해를 제시하였다. 국내의 실무에서 해안 및 항만 구조물 설계에 사용되는 수치프로그램들의 정확도를 간단히 판단할 수 있는 비교 대상으로 이러한 해석해가 이용될 수 있으리라 판단된다.

  • PDF

Eigenvalue problem petaining to the rigorous three-dimensional vector coupled-wave analysis of diffraction from surface-relief gratings (표면양각회절격자에 대한 엄밀한 3차원벡터 결합파해석의 고유값문제)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.439-444
    • /
    • 1994
  • When diffraction by arbitrary two-dimensional surface-relief dielectric gratings is analyzed using the rigorous three-dimensional vector coupled-wave analysis, it is found that the matrix eigenvalue problem pertaining to the analysis can always be simplified to that for a matrix which has the dimension of a quarter of the original, so that computing time and memory requirements for computer may be greatly reduced. However this kind of simplification can not be obtained in the case of volume diffraction gratings. tings.

  • PDF

Boundary Element Analysis for Diffraction of Water Waves with Vertical Cylinders (연직 해양구조물로 인한 파랑회절의 경계요소 해석)

  • 김성득;이성대;박종배
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1989
  • A numerical analysis of the wave characteristics of wave diffraction and the interference effects for a single cylinder and for two cylinders were carried out by the Boundary Element Method using constant elements. The Present investigation was limited to the diffraction of 2-dimensional linear waves by vertical impervious cylinders. Numerical model has been written to calculate the wave diffraction coefficient both on the boundary of the cylinders and at points away from it. The accuracy of the computational scheme was investigated by comparing the analytical results of the other reseraches. Good agreement was observed.

  • PDF