• Title/Summary/Keyword: 파랑 투과

Search Result 340, Processing Time 0.027 seconds

Marine Seismic Survey using a Multi-source System (다중음원 시스템을 이용한 해양 탄성파 탐사)

  • Kim, Hyun-Do;Kim, Jin-Hoo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.101-106
    • /
    • 2006
  • Digital technology has been applied to marine seismic survey to develop data processing technology and multi-channel marine seismic survey. In result, high-resolution marine seismic survey ended in a success. Surveys are conducted for various purposes using various frequencies of acoustic sources. A low frequency source is used for deeper penetration and a high frequency source is used for higher resolution survey. In this study, a multi-source system was used for multi-channel marine seismic survey to acquire seismic sections of both low and high frequencies. Variations of depth of penetration and resolution would be used to achieve more accurate analysis of formations. In this study, the multi-source system consists of Bubble Pulser (400 Hz) for low frequency source and Sparker (1.5kHz) for high frequency source.

  • PDF

Application and Improvement of Surface Wave Transmission Technique for Measuring the Crack Depth in Reinforced Concrete Members (철근 콘크리트 부재의 균열 깊이 측정을 위한 표면파 투과기법의 적용 및 개선)

  • Min, Ji-Young;Kim, Jae-Hong;Kwak, Hyo-Gyoung;Yun, Chung-Bang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.164-176
    • /
    • 2008
  • In order to assess the existing infrastructures, it is required to measure the crack depth of concrete members. This paper considers the surface wave transmission technique to measure the crack depth. In special, we demonstrate the effect of reinforced bar on surface wave propagation and conclude that the surface wave transmission technique has only the minor error by the reinforced bar. In addition, we propose and validate the optimal window size for eliminating various reflection waves from the boundary of members.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

The Study on the Wave Pressure of the Tsunami Acting on the Permeable Structure (투과성구조물에 작용하는 지진해일파압에 관한 연구)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2011
  • In this study, wave pressure of short-period gravity waves and tsunami acting on the upright section of the horizontal-slit type caisson placed on the impermeable or permeable seabed, which is a well-known permeable breakwater with a good wave controlling ability, are investigated via numerical simulations. Further, the permeable seabed was modeled as the porous media with porosity of 0.4. Using the numerical results, the effects of the seabed conditions on the wave pressure on the front wall and inside wall of the chamber have been studied. In the numerical simulations, short-period gravity waves and tsunami(solitary wave or bore) with the same amplitude to the gravity wave are considered. A numerical wave tank is used, which is able to consider a gas-liquid two-phase flow in the same calculation zone. Numerical results show that the wave pressure of the tsunami was 3~5 times higher than the short-period gravity waves acting on the front wall and it was 2~4 times higher than the short-period gravity waves acting on the inner wall.

Investigation of reflection coefficient for vertical caisson and slit caisson with porous structure (투과성 구조물이 위치한 직립케이슨 및 유공케이슨의 반사율 검토)

  • Lee, Sung-Jae;Yoo, Je-Seon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2175-2178
    • /
    • 2008
  • 본 연구에서는 전면에 투과성 구조물이 위치한 직립케이슨 및 유공케이슨에 대해 수치모의를 실시하여 케이슨의 형태 및 투과성 구조물의 존재유무에 따른 반사율의 감소효과에 대하여 알아보았다. 수치모의에 사용된 모델은 비압축성 점성유체에 대한 복잡한 자유수면 변위의 표현이 가능한 VOF법을 적용하여 Navier-Stokes 방정식을 보다 정확하게 해석하는 CADMAS-SURF(수치파동수로)를 사용하였다. 상기 구조물에 규칙파를 입사하여 반사율을 산정한 결과 주기에 따라 차이가 있지만, 직립케이슨만이 존재하는 경우에 비해 직립케이슨 전면에 투과성 구조물이 위치한 경우 대략 5%정도의 반사율 감소효과를 얻을 수 있었고 유공케이슨만이 존재하는 경우에 비해 유공케이슨과 투과성 구조물이 조합 된 경우에는 20%이상의 감소효과를 얻을 수 있었다. 따라서, 방파제 전면에 위치한 구조물에 대한 반사파의 피해 감소 및 항만 내부 정온도를 고려한 안벽의 시공이 요구되어 질 경우에 투과성 구조물은 직립케이슨과의 조합보다는 반사율을 상대적으로 크게 감소시킬 수 있는 유공케이슨과의 조합이 적절함을 알 수 있었다.

  • PDF

Reflection and Transmission of Regular Waves by Multiple-Row Curtainwall-Pile Breakwaters (다열 커튼월-파일 방파제에 의한 규칙파의 반사 및 투과)

  • Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-111
    • /
    • 2006
  • Using the eigenfunction expansion method, a mathematical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row curtainwall-pile breakwater. In addition, hydraulic model experiments have been conducted with different values of porosities between the piles, drafts of the curtain walls, and distances between the rows of the breakwater. It is found that the reflection and transmission coefficients decrease and increase, respectively, with decreasing relative water depth, but they bounce to increase and decrease, respectively, as the relative water depth decreases further. When either the porosity between the piles or the draft of the curtain wall is changed with other parameters fixed, the relative magnitudes of the reflection and transmission coefficients have been changed, but the general trend remained the same. When the wavelength is the same as the distance between the rows of the breakwater, a rapid change was observed for the reflection and transmission coefficients. A good agreement between the measurement and prediction was also founded for three-row breakwaters.

Computation of Wave Transformation over a Multi-Step Topography by a Scatterer Method (산란체법에 의한 다중 계단지형에서의 파랑변형 계산)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.439-451
    • /
    • 2008
  • Based on reflected and transmitted waves by a single step bottom, a new model of scatterer method is constructed which can be used to calculate wave transformation over a multi-step topography. The approximate results are tested by comparison with the more accurate results obtained from EFEM presented by Kirby and Dalrymple(1983). In the case of plane-wave approximation, solutions of the scatterer method and the EFEM are the same. Results obtained by the scatterer method with non-propagating modes are much better, in terms of phase for the calculated reflection and transmission coefficients, than those by plane-wave approximation. As the effect of non-propagating modes decreases, solutions of the scatterer method become closer to those of the EFEM.

Boundary Element Analysis on the Hydraulic Characteristics of Submerged Breakwater with Trapezoidal Type (사다리꼴형상 잠제의 수리특성에 관한 경계요소해석)

  • Kim Nam-Hyeong;Yang Soon-Bo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • The reflection and transmission of submerged breakwater with trapezoidal type are computed numerically using boundary element method. The analysis method is based on the wave pressure function with the contlnuit? in the analytical region including fluid and porous structures. Wane motion within the porous structures is simulated by introducing the linear dissipation coefficient and added mass coefficient. The results indicate that transmission and reflection coefficient are determined due to the change of slope of submerged breakwater with trapezoidal type.

  • PDF