본 논문에서는 particle swarm optimization(PSO)를 통한 비선형시스템의 퍼지집합 퍼지모델의 최적화 방법을 제안한다. 퍼지 모델링에서 전반부 동정, 즉 구조 동정 및 파라미터 동정은 비선형 시스템을 표현하는데 있어서 매우 중요하다. 퍼지모델의 전반부 동정에 있어 최적화 과정이 필요하며 유전자 알고리즘(Genetic Algorithm; GA)을 이용하여 퍼지모델을 최적화한 연구가 많이 있다. 본 연구는 파라미터 동정 시 최근 여러 가지 어려운 최적화 문제를 수행함에 있어서 성능의 우수성이 증명된 PSO를 이용하여 퍼지집합 퍼지모델의 전반부 파라미터를 동정하였다. 구조동정은 단순 유전자 알고리즘(Simple Genetic Algorithm; SGA)을 이용하여 동정하였으며 파라미터 동정시 실수 코딩유전자 알고리즘(Real Coded Genetic Algorithm; RCGA)와 PSO를 각각 파라미터 동정에 이용하여 성능을 비교하였다.
The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.7
no.5
/
pp.36-42
/
1993
최근 반도체기술의 발달과 마이크로프로세서 제어기술의 발달로 유도전동기의 정밀제어가 가능해졌다. 유도전동기로서 고 응답성을 확보하기 위하여 주로 벡터제어방식을 도입하였다. 그러나 시스템이 모터 파라미터의 변화에 따라서 성능이 저하되거나 또는 불안정해질 수 도 있다. 특히 모터 파라미터변화의 하나로서 온도상승에 따른 모터 2차저항값의 변화는 시스템 성능에 심한 영향을 끼친다. 본 논문에서는 이에 대한 대책으로 파라미터를 동정하는 벡터제어방식을 연구하였다. 유도전동기의 2차저항을 동정하기 위해서 2차쇄교자속상의 1차전류에 교류분을 중첩시키는 것이 필요하였으며 동정시점의 결정은 2차전류가 정격의 1.5배에서 1분 경과한 때를 동정의 시점으로 하였다. 동정알고리즘은 등가 피이드백계를 도출하고 그것을 이용해 안정성이 확보되는 것을 확인할 수 있었다.본 논문에서는 온도변화가 클 경우에만 모터 파라미터를 동정하여 제어 파라미터를 수정하므로써 정밀도의 향상뿐만 아니라 속응성의 향상도 기대할 수 있다.
본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 동정하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정하기 위한 유전론적 접근을 소개한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개별적인 방법과 동시적인 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.370-373
/
2006
본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 설계하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개선된 연속적 동조 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.467-470
/
2005
퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 따라서 본 논문에서는 퍼지 모델의 전반부 및 후반부의 구조 동정과 파라미터 동정에 있어서 최적의 구조 및 파라미터를 찾기 위해 유전자 알고리즘을 이용한다. 초기 퍼지 모델을 설계하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정한다. 구축된 퍼지 모델은 유전자 알고리즘에 의해 세대를 거듭하면서 전반부 파라미터를 자동 동조함으로써 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정을 동시에 시행함으로서 정보 입자 기반 퍼지 모델의 유전자적 최적화를 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.203-206
/
2002
동적 시스템의 동정은 시스템의 관측된 데이터를 가지고 동적 모델의 수학적 모델을 찾는 문제를 다루는 것이다. 기존의 고전적인 방법으로는 차분 방정식(ARX 또는 ARMAX) 또는 상태 공간 표현에 관한 계수들을 추정하기 위해서 회귀 기법 등을 사용하였다. 그러나 이러한 고전적인 방법들은 파라미터가 비선형이고, 실세계 문제에서 모델링 오차나 측정 잡음을 수반하게 되면 탐색의 어려움을 가지게 된다. 따라서 이러한 문제점을 극복하고자 퍼지 이론이나 신경망 이론 둥이 이용되었으나 본 논문에서는 비선형 동적 시스템의 파라미터 동정에 최근 복잡한 최적화 문제를 해결하는 도구로 점점 관심을 받고 있는 유전 알고리즘을 동정 알고리즘으로 제안하고, 비선형 동적 시스템의 파라미터 동정에 유전 알고리즘을 응용한 몇 가지 예를 제시하고자 한다.
본 논문은 제어 공정의 파라미터의 동정과 축소모델을 이용하여 선형 및 비선형 특성을 고려한 PID 제어기 설계를 제안하였다. 제어기 파라미터값은 2차의 지연시간을 갖는 축소 모델의 파라미터값에 의해 결정되며, 외란 및 제어 공정의 파라미터 값이 변할 때에는 실제 모델의 동정을 통해 구하며, 또한 실제 공정과 축소 모델의 관계식을 통해 제어 파라미터 값을 실시간으로 보정하여 제어한다. 시뮬레이션을 통하여 실시간 모델 동정 및 제어 파라미터 값이 보정됨을 확인 할 수 있다.
Kim S. S.;Kwak K. C.;Lee D. J.;Kim S. S.;Ryu J, W.;Kim J. S.;Kim Y. T.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.289-292
/
2005
본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.9
no.5
/
pp.555-565
/
1999
The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of
nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input
variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy
modeling implements system structure and parameter identification using the fuzzy inference methods and
hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of
inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid
optimal identification algorithm is carried out using both a genetic algorithm and the improved complex
method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of
premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried
out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use
the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square
method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance
index with weighting factor is proposed to achieve a balance between performance results of fuzzy model
produced for the training and testing data. Two numerical examples are used to evaluate the performance of
the proposed model.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.112-115
/
1998
본 논문은 퍼지 추론 시스템 모델의 최적화를 제시한다. 비선형적이고 복잡한 실시스템의 특성을 해석하는 방법으로써 시스템의 정적 혹은 동적 특성을 묘사하기 위해 퍼지 모델이 사용된다. 그러나 퍼지 시스템의 동정은 경험적 방법에 의해 규칙을 추출하기 때문에, 보다 논리적이고 체계적인 방법에 의한 추출 방법의 고찰이 필요하다. 제안된 규칙베이스 퍼지모델은 GA 및 퍼지규칙의 이론을 이용한 시스템 구조와 파라미터 동정을 시향한다. 두형태의 퍼지모델 방법은 간략추론 및 선형추론에 의해 시행된다. 본 논문에서는 퍼지 추론 시스템의 전반부 파라미터 동정을 통해 퍼지 입력공간을 정의함으로써 비선형 시스템을 표현한다. 전반부 파라미터의 동정세는 유전자 알고리즘을 사용하고, 후번부는 표준가우스 소거법을 사용하여 동정한다. 최적화는 유전자 알고리즘에 기초한 자동-동조 방법이며, 학습 및 데이터의 성능결과의 상호 균형을 얻기 위한 하중값을 가진 성능지수가 제시된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.