• Title/Summary/Keyword: 파동 주파수

Search Result 132, Processing Time 0.034 seconds

A Study on the Design of Tool Horn for Cutting Converged with Theoretical Method and FEA (이론적 방법과 유한요소해석이 융합된 커팅용 공구 혼의 설계에 관한 연구)

  • Lee, Han-Chang;Jeong, Jin-Hyuk;Park, Chung-Woo;Oh, Myung-Seok;Park, Myung-Kyu;Lee, Bong-Gu;Kim, Chang-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.175-182
    • /
    • 2018
  • In this study, the theoretical method and the finite element analysis were designed in parallel to fabricate basic research data on the production of tool horn for cutting machine with ultrasonic vibration energy. In order to perform high-performance ultrasonic cutting, it is necessary to vibrate only with longitudinal vibration instead of transverse vibration. In order to efficiently transmit the mechanical vibration energy, the maximum amplitude should be generated at the output portion. Therefore, the tool horn must be designed so that the excitation frequency of the oscillator and the natural frequency of the tool horn are the same. In order to design the resonance of the tool horn, there are a theoretical approach using the one-dimensional wave equation and a method of reflecting the finite element analysis result to the design model. In this study, the approximate dimensions of the tool horn are first determined through the one- Based on the results of the finite element analysis, the optimal model was selected and reflected in the final shape of the tool horn. We will use this information as the basic data of actual tool horn for cutting, and will compare the production and experimental data with the contents of this research.

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

Underwater Acoustic Characteristics and Application to Seabed Survey (해저탐사에 적용되는 음파특성)

  • Kim, Seong-Ryul;Lee, Yong-Kuk;Jung, Baek-Hun
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2006
  • The electromagnetic (light) waves have a limitation to penetrate media, ie, water and sea-bottom layers, due to high energy attenuation, but acoustic (sound) waves play as the good messenger to gather the underwater target information. Therefore, the acoustic methods are applied to almost all of ocean equipments and technology in terms of in-water and sub-bottom surveys. Generally the sound character is controlled by its frequency. In case that the sound source is low frequency, the penetration is high and the resolution is low. On the other hand, its character is reversed at the high frequency. The common character at the both of light and sound is the energy damping according to the travel distance increase.

  • PDF

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

Variation Characteristics of Irregular Wave Fields around 2-Dimensional Low-Crested-Breakwater (2차원저천단구조물(LCS)의 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Choi, Goon Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.356-367
    • /
    • 2019
  • This study evaluates the variation characteristics of irregular wave fields for two-dimensional Low-Crested Structure (LCS) by olaFlow model based on the two-phases flow by numerical analysis. The numerical results of olaFlow model are verified by comparing irregular wave profile of target wave spectrum and measured one, and their spectra. In addition, spacial variation of irregular wave spectrum, wave transmission ratio, root-mean square wave height, time-averaged velocity and time-averaged turbulent kinetic energy by two-dimensional LCS are discussed numerically. The time-averaged velocity, one of the most important numerical results is formed counterclockwise circulating cell and clockwise nearshore current on the front of LCS, and strong uni-directional flow directing onshore side around still water level.

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

Multiple Scattering of Elastic SH Waves by Randomly Distributed Ciecular Cylinders : Characterization of Dynamic Properties of FRC (랜덤하게 분포한 원형 실린더에 의한 SH 탄성파의 다중산란 : 섬유강화 복합재료의 동특성파악)

  • Kim, Jin-Yeon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 1992
  • The propagation of coherent time-harmonic elastic SH waves in a medium with random distribution of cylindrical inclusions is studied for characterizing the dynamic elastic modulus and the attenuation property of fiber-reinforced composite materials. A multiple scattering theory using the single scattering coefficients in conjunction with the Lax's quasicrystalline approximation is derived and from which the dispersion relation for such medium is obtained. The pair-correlation functions between the cylinders which are needed to formulate the multiple scattering interaction between the cylinders are obtained by Monte Carlo simulation method.From the numerically calculated complex wavenumbers, the propagation speed of the average wave, the coherent attenuation coefficient and the effective shear modulus are presented as functions of frequency and area density.

  • PDF

An Experimental Study on Resonance of Temperature Field by Low-Frequency Oscillating Wall in a Side Heated Enclosure (저 주파수 벽면 가진에 의한 밀폐공간 내부 온도장의 공진 특성 실험)

  • Kim, Seo-Yeong;Kim, Seong-Gi;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1272-1280
    • /
    • 2001
  • An experimental study has been conducted to elucidate the resonance of natural convection in a side-heated square enclosure having a mechanically oscillating bottom wall. Under consideration is the impact of the imposed oscillating frequency, amplitude and the system Rayleigh number on the fluctuation of air temperatures. The experimental results show that the magnitude of the fluctuation of air temperature is substantially augmented at a specific forcing frequency of the oscillating bottom wall. The resonant frequency is increased with the increase of the Rayleigh number and it is little affected by the amplitude of the oscillating wall. It is also found that the resonant frequency is relevant to the Brunt- V$\"{a}$iS$\"{a}$l$\"{a}$ frequency which represents the stratification degree of the system.