본 연구에서는 주기적 송신원 추출 기법을 사용한 완전 파형 역산 시 목적함수의 안정적인 수렴을 위해 참조 송신원 부분집합을 사용하는 방법을 제안하였다. 완전 파형 역산은 반복적인 파동 전파 모델링을 통해 수행되며, 송신원 개수가 증가할수록 계산 시간이 증가하게 된다. 완전 파형 역산의 계산량을 줄이기 위한 기법들 중 하나로, 주기적 송신원 추출 기법을 사용할 수 있지만 이 경우 역산 초기부터 목적함수가 진동하며 수렴하기 때문에 수렴 판별에 문제가 생기게 된다. 이러한 문제를 해결하고자 본 연구에서는 주기적 송신원 추출 기법을 이용해 모델을 갱신하되, 고정된 참조 송신원 부분집합을 이용해 목적함수를 계산하는 방법을 제안하였다. Marmousi 속도 모델을 이용한 완전 파형 역산 예제를 통해 참조 송신원 부분집합을 이용하면 주기적 송신원 추출 기법을 사용하더라도 목적함수가 안정적으로 수렴할 수 있음을 확인하였다.
사용자가 원하는 3D 사운드 혹은 소리의 공간감을 원하는 대로 재현할 수 있는 오디오 시스템은 오랜 기간 동안 인류가 가지고 싶었던 꿈의 기계였다. 그러나 과연 개인 혹은 사용자가 원하는 3D 사운드라는 것이 무엇이며 어떻게 정의하여야 하는지는 명확하지 않다. 이것은 매우 주관적인 개념일 뿐만 아니라 개인에 따라 다를 수 있으며, 그 평가에 대한 객관적인 방법 또한 존재하지 않는다. 관련된 연구를 살펴보면, 원하는 소리의 파동 전파 자체를 시공간 상에서 물리적으로 재현하는 WFS(Wave Field Synthesis)나 Ambisonics, 또는 머리전달함수(HRTF: Head Related Transfer Function)를 기반으로 한 많은 연구들이 있다. 이렇게 재현된 음장(sound field)을 보면 이들이 인지되고 평가되는 등의 객관화를 위하여는 청취 환경에 따라 그 특성이 바뀌고 동일한 환경에서도 청취자에 따라 다르게 인지되는 근본적인 문제점을 가지고 있다. 음장 재현 방법의 이러한 근본적인 문제는 놀랍게도 과거의 스테레오 시스템에서 볼 수 있는 밸런스 노브(balance knob)로부터 그 해결의 실마리를 찾을 수 있다. 밸런스 노브는 보편적인 최적의 소리를 찾는 대신에 청취자가 원하는 음향 효과를 얻을 때까지 직접적으로 소리를 청취하고, 스스로 조절하여 평가할 수 있는 매개체의 역할을 수행한다. 만일 밸런스 노브와 같이 청취자가 원하는 3D 사운드를 스스로 평가하고 조절하기 위한 방법을 마련할 수 있다면? 즉, 청취자가 시공간적으로 원하는 3D 사운드를 실시간으로 청취하고 변화시킬 수 있는 인터페이스를 구현할 수 있다면? 과연 그러한 것이 어떻게 가능할 수 있는지 체계적인 검토가 이루어질 수 있다면 매우 좋을 것이다. 본 고는 이러한 것을 가능케 할 수 있는 즉, 청취자가 자유 자재로 원하는 음장을 형성할 수 있는 렌더링 기법 및 즉각적인 피드백이 가능한 인터페이스를 소개하고 있다. 인터페이스는 현재까지 오디오 시스템에서 주로 사용되는 주파수 이퀄라이져(frequency equalizer)와 매우 유사한 특징이 있다. 이러한 점을 감안하여 "Spatial Equalizer$^{(R)}$"라는 이름을 붙여 보았다. Spatial Equalizer$^{(R)}$는 공간 상에 하나의 점 또는 다수의 점으로 표시되는 가상 음원을 사용자가 조종하여 원 소리의 공간감을 제어할 수 있도록 구성되어 있다. 공간 상에 다수의 점 음원들의 위치를 변화시키거나 크기를 변화시킴으로써 청취자가 원하는 공간감을 구현할 수 있도록 하고 있다. 중요한 것은 종전의 이퀄라이져와 같이 Spatial Equalizer$^{(R)}$에 의해 형성되는 음장이 어떤 객관적인 척도에 의해서 평가되는 대신 사용자에 의해 직접 주관적으로 평가되고, 선택된다는 점이다.
본 논문은 지하내부에 존재하는 공동의 존재를 밝히기 위한 시추공 토모그래피 탐사에 있어서 보다 정확한 자료의 역산을 위해 공동 주위에서의 파의 전파양상을 규명하기 위하는데 목적이 있다. 터널탐사에서 주로 사용되는 파동원의 주파수는 2kHz-5kHz에 달하며, 자료의 역산에 있어서 파장의 1/10 내외의 격자간격을 설정하는 것이 적합하다. 공동을 지나는 탄성파의 전파는 공동내부의 탄성파 속도에 따라 공동을 우회 또는 투과하며, 우회하는 탄성파는 공동의 탄성파 속도의 영향을 받지만 주로 모암의 탄성파 속도로 전파한다. 또한 모암의 탄성파속도와 공동의 탄성파 속도 사이의 편차가 작아질수록 탄성파는 공동을 투과하는 특성을 보인다.
음향 탄성영상법은 외부 진동을 조직에 인가하고 조직 운동을 측정함으로써 조직의 탄성을 영상화하는 초음파영상기법이다. 본 논문에서는 음향 탄성영상법에서 표면 진동자에 의해 연조직 내에 파동이 발생되는 특성과 모드패턴이암과 같은 병변 검출에 미치는 영향을 조사였다. 이를 위해 반공간, 두께가 일정한 무한평판, 그리고 유한 크기 조직에서 발생된 진동패턴을 이론과 유한요소법으로 계산하고 분석하였다. 유한 너비 진동원에 의해 조직에는 특정한 방향으로 강하게 전달되는 횡파가 발생하였으며, 그 특성은 진동자 너비, 주파수 및 진동자로부터의 거리에 의존하였다. 유한 크기 조직에서 병변의 검출가능성은 변위영상에서는 조직내 모드패턴에 큰 영향을 받았으며, 이에 비해 변형률영상에서는 모드패턴에 덜 민감하고 검출가능성도 아주 높은 것으로 나타났다.
한국기초과학지원연구원 부산센터에서 개발 중인 28 GHz ECRIS에 대한 마이크로파 패킷의 전파와 흡수에 대한 분석을 제한된 변수 범위 내에서 실시하였다. 28 GHz 자이로트론에서 발생된 마이크로파는 도파관 시스템을 거쳐 자기장 및 플라즈마 캐비티의 축방향으로 입사된다. 축방향 자기장만을 고려한 분석적 Ray Tracying에 의하면 고자기장 영역에서 준 종파로 입사된 전자기 파동의 패킷은 전자 사이클로트론 공명 영역으로 진행함에 따라 바깥 방향에서 안쪽 방향으로 방향을 바꾼다. 따라서 일정 수준의 전자밀도가 유지되면 입사 초기에 발산하던 파동은 공명에 의하여 플라즈마로 흡수되기 전에 전도체인 플라즈마 캐비티 벽에 충돌할 가능성이 크지 않음을 확인하였다. 또한 플라즈마로의 흡수율이 매우 크므로 인출부 벽에서 반사될 가능성도 크지 않다.
Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.
보현산($36.2^{\circ}\;N,\;128.9^{\circ}\;E$)의 전천카메라로 관측한 OI 557.7nm 밤대기광 방출선에 나타난 단주기 중량파의 운동량 플럭스가 산출되었다. 중량파의 고유위상속도($C_{int}$), 고유주기(${\tau}_{int}$), 그리고 수직파장(${\lambda}_z$)는 전천 화상에서 도출된 수평파장(${\lambda}_h$), 관측파동주기(${\tau}_{ob}$), 진행방향(${\phi}_{ob}$), 관측위상속도(${\upsilon}_{ob}$)와 일본 Shigaraki($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) 페브리-페로 간섭계로부터 관측된 중성바람으로부터 유도되었다. 2002년부터 2006년까지 두 관측소의 기상 및 관측 장비 상태를 고려한 결과 총 5일이 분석 가능일로 선택되었다. 중량파 고유파동계수의 평균값은 $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;(C_{int})\;=\;40.6\;{\pm}\;11.6min$으로 나타났다. ${\lambda}_z\;<\;6km$인 경우를 제외하고 4일에 대한 계산된 운동량 플럭스의 값은 $12.0{\pm}15.2m^2/s^2$이다. 중간권 중량파의 전형적인 운동량 플럭스를 획득하기 위하여 전천 카메라와 중성바람을 측정할 수 있는 장비와의 장기간에 걸친 연계관측이 요구된다.
최근 반도체, 디스플레이 및 태양전지 공정장비의 대면적화는 일반적인 추세라고 할 수 있으며, 특히 매우 높은 주파수로 구동되는 축전결합플라즈마원의 경우에 기존 장비에서 나타나지 않던 파동현상이 발현하게 된다는 사실이 잘 알려지고 있다. 그러나, 이러한 현상에 대한 물리학적 이해가 충분하다고 할 수 없고 분석도구로서의 전산모사 연구, 개발은 매우 부족한 상황이므로 이로 인해 장비의 설계에서부터 공정조건 안정화에 이르기까지 많은 측면에서 문제점들이 나타나고 있다. 따라서, 생산현장에서 나타나는 이러한 문제점들을 극복하기 위한 물리학적 모델링과 전산모사의 필요성이 매우 높아지고 있는 상황이며 본 연구에서는 지금까지 발표된 이론적인 연구결과들을 정리, 분석하고 앞으로 진행되어야 할 연구, 개발의 방향을 조명해 보고자 한다.
레이저 증폭기를 능동영역(Ruby Rod)에서의 Fabry-Perot 공진기의 방법으로 취급했고 5층, 즉 공기일반사판-Ruby-반사판-공기의 구조로 고찰했다. 일차원 스캘라파동방정식으로 Maxwell 전자방정식을 이용하여 입사계가 연속이라는 가정하에 경계치문제로 봤으며 모든 폭사계는 각경계면에 수직으로 입사한다고 생각했다. 모든 방정식은 Laplace 변환으로 과도현상론적으로 취급했으며 증폭기로서의 안정영역과 자려발진기로서의 불안정영역을 고찰했다. 또한 과도항과 관련된 레이저 증폭기 설계상의 문제도 생각했다.
'70년대에 석유파동을 겪으면서 국내에서는 태양에너지 이용기술 개발의 필요성을 인식하여 비 상한 관심을 갖고 태양에너지 연구소를 설립하는 등 대체에너지원 개발에 박차를 가해왔다. 그 러나 '80년대 중반 이후 유가의 지속적인 안정으로 기술개발 투자가 점차 둔화되고 있는 실정 이다. '90 년대 중반에 예상되는 고유가 시대와 작년의 걸프사태와 같은 돌발적인 사태에 기인한 유가 불안정 요인은 우리 나라와 같은 석유자원이 전무한 상태에서는 매우 충격적인 일로 받아 들여지고 있다. 그 뿐 아니라 화석연료의 사용 증가에 따른 지구온난화 현상 및 환경보전 문제가 크게 부각되고 있는 현상태에서 태양에너지 이용기술 개발은 장기적인 계획 하에 지속적으로 추진되어야 할 것이다. 이와 같은 주변환경의 변화와 에너지 공급의 안정화를 위해서도 새로운 자세와 정책적인 기술개발 투자 및 지원을 강화해야 할 것이다. 태양열 이용기술 중 일부 실용 화된 분야는 적극적인 보급 활성화가 이루워지도록 지원을 해야하며 기술개발을 위한 연구비를 선진국 수준으로 높혀야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.