Browse > Article

Wave Generation and Its Effect on Lesion Detection in Sonoelastography: Theory and Simulation Study  

박정만 (대진대학교 물리학과)
권성재 (대진대학교 통신공학과)
정목근 (대진대학교 전자공학과)
Abstract
Sonoelastography is an ultrasound-based technique that visualizes the elastic properties of soft tissues by measuring the tissue motion generated by an externally applied vibration. In this paper. the characteristics of wave generation in soft tissues due to an acoustic vibrator are studied. The effects of modal patterns on the detectability of lesions such as tumors in senoelastography are also investigated These are accomplished by analyzing the vibration patterns calculated using theoretical equations and finite element methods in halt space, infinite plate. and finite-sized tissue. A finite-width source generates shear waves with large amplitude Propagating in specific directions. and the generation characteristics depend both on the width and frequency of the vibrator. as well as the distance from it. It is shown in a finite-sized tissue that the lesion detection in displacement images is quit dependent on the modal patterns inside tissue. In contrast it Is also found that the lesion detectability in strain images is less dependent on the modal Patterns and is much better than that in displacement images.
Keywords
Ultrasonic imaging; Soft tissue; Sonoelastography; Vibrational amplitude; Strain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Fatemi and J.F. Greenleaf, 'Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,' Phys. Med. Biol., 45, 1449-1464, 2000   DOI   ScienceOn
2 P. Chaturvedi, M.F. Insana, and T.J. Hall, 'Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure,' Medical Image Analysis, 2 (4), 325-338, 1998   DOI   ScienceOn
3 R. Souchon, L. Soualmi, M. Bertrand, J.Y. Chapelon, F. Kallel, and J. Ophir, 'Ultrasonic elastography using sector scan imaging and a radial compression,' Ultrasonics, 40, 867-871, 2002   DOI   ScienceOn
4 S. Catheline, F. Wu, and M. Fink, 'A solution to diffraction biases in sonoelasticity: The acoustic impulse technique,' J. Acoust. Soc. Amer., 105 (5), 2941-2950, 1999   DOI   ScienceOn
5 S. Catheline, J.L. Thomas, F. Wu, and M.A Fink, 'Diffraction field of a low frequency vibrator in soft tissues using transient elastography,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 46 (4), 1013-1019, 1999   DOI   ScienceOn
6 K. Nightingale, S. McAleavey, and G. Trahey, 'Shearwave generation using acoustic radiation force: In vivo and ex vivo results,' Ultrasound in Med. & Biol., 29 (12), 1715-1723, 2003   DOI   ScienceOn
7 M. Hauth, J. Gross, W. Strasser, and G.F. Buess, 'Soft tissue simulation based on measured data,' Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention, Montreal, Canada, 262-270, 2003
8 C.R. Hou, 'Design and development of a pulsed wave Doppler ultrasonic system for measuring the viscoelasicity of soft tissue,' Ph.D. dissertation, National Cheng Kung University, Taiwan, 2002
9 L.S. Taylor, D.J. Rubens, and K.J. Parker, 'Artifacts and artifact reduction in sonoelastography,' Proc. IEEE Ultrasonics Symp., 1849-1852, 2000
10 J. Bercoff, M. Tanter, M. Muller, and M. Fink, 'The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51 (11), 1523-1536, 2004   DOI   ScienceOn
11 K.J. Parker, D. Fu, S.M. Graceswki, F. Yeung, and S.F. Levinson, 'Vibration sonoelasticity and the detectability of lesions,' Ultrasound in Med. Biol. 24 (9), 1437-1447, 1998   DOI   ScienceOn
12 Y. Hayakawa, T. Wagar, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, 'Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 33 (6), 759-763, 1986   DOI   ScienceOn
13 T. Sato, Y. Yamakoshi, and T. Nakamura, 'Nonlinear tissue imaging,' Proc. IEEE Ultrasonics Symp., 889-900, 1986
14 L.S. Taylor, M.S. Richards, A.J. Moskowitz, A.L. Lerner, D.J. Rubens, and K.J. Parker, 'Viscoelastic effects in sonoelastography: Impact on tumor detectability,' Proc. IEEE Ultrasonics Symp., 1639-1642, 2001
15 P. He and A. McGoron, 'Parameter estimation for nonlinear frequency dependent attenuation in soft tissue,' Ultrasound in Med & Biol, 15 (8), 757-763, 1989   DOI   ScienceOn
16 Y. Yamakoshi, J. Sato, and T. Sato, 'Ultrasonic imaging of internal vibration of soft tissue under forced vibration,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 37 (2), 45-53, 1990   DOI   ScienceOn
17 M.K. Jeong and S.J. Kwon, 'Tissue stiffness imaging method using temporal variation of ultrasound speckle pattern,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 50 (4), 457-460, 2003   DOI   ScienceOn
18 D. Yanwa, T. Jia, and S. Yongchen, 'Relations between the acoustic nonlinearity parameter and sound speed and tissue composition,' Proc. IEEE Ultrasonics Symp., 931-934, 1987
19 F. Kallel and M, Bertrand, 'Tissue elasticity reconstruction using linear perturbation method,' IEEE Trans. Med. Imag., 15 (3), 299-313, 1996   DOI   ScienceOn
20 K.F. Graff, Wave Motion in Elastic Solids, (Ohio State University Press, 1975.)
21 J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J.L. Gennisson, and M. Meunier, 'In vivo breast tumor detection using transient elastography,' Ultrasound in Med. Biol., 29 (10), 1387-1396, 2003   DOI   ScienceOn
22 J. Ophir, E.I. Cespedes, B. Garra, H. Ponnekanti, Y. Huang, and N. Maklad, 'Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo,' Eur. J. Ultrasound, 3, 49-70, 1996   DOI   ScienceOn
23 L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson, 'Imaging of the elastic properties of tissues-A review,' Ultrasound in Med. & Biol., 22 (8), 959-977, 1996   DOI   ScienceOn
24 K.J. Parker, S.R. Huang, R.A. Musulin, and R.M. Lerner, 'Tissue response to mechanical vibrations for sonoelasticity imaging,' Ultrasound in Med. Biol., 16 (3), 241-246, 1990   DOI   ScienceOn
25 B. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing, Emantec, Trondheim, (Norway, 2000.)
26 L. Sandrin, M, Tanter, D. Cassereau, S. Catheline, and M. Fink, 'Low-frequency shear wave beam forming in time-resolved 2D pulsed elastography,' Proc. IEEE Ultrasonics Symp., 1803-1808, 2000
27 T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, and T.J. Hall, 'The elastic moduli of breast and prostate tissues under compression,' Ultrason. Imaging, 20 (4), 260-274, 1998   DOI   ScienceOn
28 K. Nightingale, S. McAleavey, and G. Trahey, 'Shearwave generation using acoustic radiation force: In vivo and ex vivo results,' Ultrasound in Med. & Biol., 29 (12), 1715-1723, 2003   DOI   ScienceOn
29 L. Gao, K.J. Parker, and S.K. Alam, 'Sonoelasticity imaging: Theory and experimental verification,' J. Acoust. Soc. Am., 97 (6), 3875-3886, 1995   DOI   ScienceOn
30 A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, and S.Y. Emelianov, 'Shear wave imaging: A new ultrasonic technology of medical diagnostics,' Ultrasound in Med. & Biol., 24 (9), 1419-1435, 1998   DOI   ScienceOn
31 R.D. Cook, D.S. Malkus, and M.E. Plesha, Concepts and Application of Finite Element Analysis, (John Wiley & Sons, New York, 1989.)
32 M. O'Donnell, A.R. Skovoroda, B.M. Shapo, and S.Y. Emelianov, 'Internal displacement and strain imaging using ultrasonic speckle tracking,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 41 (3), 314-325, 1994   DOI   ScienceOn
33 L. Sandrin, M. Tanter, S. Catheline, and M. Fink, 'Shear modulus imaging using 2-D transient elastography,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 49 (4), 426-435, 2002   DOI   ScienceOn
34 J.D. Achenbach, Wave Propagation in Elastic Solids, (North-Holland, Amsterdam, 1975.)
35 L. Sandrin, B. Fourquet, J.M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, and M. Ziol, 'Transient elastography: A new noninvasive method for assessment of hepatic fibrosis,' Ultrasound in Med. & Biol., 29 (12), 1705-1713, 2003   DOI   ScienceOn
36 C.S. Chu and M.C. Lee, 'Finite element analysis of cerebral contusion,' Advances in Bioengineering, ASME-BED-Vol. 20, 601-604, 1991
37 S.F. Levinson, M. Shinagawa, and T. Sato, 'Sonoelastic determination of human skeletal muscle elasticity,' J. Biomechanics, 28 (10), 1145-1154, 1995   DOI   ScienceOn