• Title/Summary/Keyword: 파괴 해석

Search Result 2,441, Processing Time 0.026 seconds

파이프라인 파손의 파괴역학적 해석

  • 이상록;이학주;한승우;김찬규
    • Journal of the KSME
    • /
    • v.32 no.4
    • /
    • pp.379-390
    • /
    • 1992
  • 1) 수치해석 결과, 운용압력으로 인한 엘보우에서의 응력은 재료의 강도에 비해 파손을 발생시 키기에는 상대적으로 작았고, 오히려 온도차에 의한 열응력이 내압에 의한 응력보다 매우 컸다. 즉 축방향 열응력은 운용압력에 의한 것보다 두배 더 크게 나타났다. 2) 파면의 육안 검사 결과, 급격한 파손은 취성 벽개 파괴로 인한 것으로 추측된다. 3) 시험 결과 균열이 시작하여 임계 크기로 진전한 부위인 K사에서 만든 엘보우는 S사에서 만든 것보다 훨씬 더 취성적임을 보여 주었다. 4) 임계 균열크기를 계산하기 위해 파괴 역학적 해석을 사용하는데 그 결과는 파손된 면에서 관 찰한 실제 균열 크기와 상당히 일치하였다. 5) 유사한 사고를 방지하기 위하여, 플랜트를 가동하는 동안 계속적으로 파괴 역학적 개념을 적 용해야 한다. 또한 운용전과 운용중에 잘 준비된 비파괴검사법을 사용하여야 한다.

  • PDF

Ductile Failure Simulation of Tensile Plates with Multiple Through-Wall Cracks Based on Damage Mechanics (유한요소 손상 해석을 이용한 다중 관통균열 인장시편의 연성 파괴 시뮬레이션)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.245-252
    • /
    • 2012
  • This paper proposes a simple numerical method, based on the stress-modified fracture strain-damage model with the stress-reduction technique, for predicting the failure behaviors of ductile plates with multiple through-wall cracks. This technique is implemented using the user-defined subroutines provided in ABAQUS. For validation, the results simulated using the proposed method are compared with published experimental data of Japanese researchers.

Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed (페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도)

  • Ha, Youn-Doh;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.637-643
    • /
    • 2011
  • The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

Modeling of Fracture Toughness Test Procedures for Metal and Rock Materials using LS-DYNA (LS-DYNA를 이용한 금속 및 암석 재료의 파괴인성시험 모델링)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, two fracture toughness test procedures are modelled for selected metal and rock on LS-DYNA, which is a commercial finite element code. The tests are conducted by using the 3-point bend test procedure for rectangular bar specimen. Because it takes a relatively long time to conduct the test, the implicit solver based on the Newmark method is adopted for the analyses. The values of stress intensity factor obtained from the analyses are 73 and $0.3MPa.m^{0.5}$ for the metal and rock material, respectively. It can be thought that the resulting small value of the fracture toughness of the rock material model well represents the brittleness of rock material.

암석의 파괴거동 모형화에 대한 고찰

  • 김문겸;장정범;오금호;이필규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.67-81
    • /
    • 1995
  • 암반 구조체를 해석하기 위해서는 파괴전의 응력-변형률 거동뿐만 아니라 파괴를 구성하는 삼차원 응력 상태를 알아야 한다. 암반의 파괴를 지배하는 조건을 결정하기 위해서는 일반적인 삼차원 파괴기준이 필요하다. 암반의 파괴를 이루는 응력상태를 파악하기 위해 많은 실험적 연구가 수행되었으며 특히 장비의 사용에 있어서 하중 메카니즘과 시료의 경계조건의 개선에 많은 연구가 진행되었다. 암반의 파괴조건을 설명하는 데에는 이러한 기본적인 기준들 이외에도 경험적인 기준들이 사용되어 왔다. Hoek 와 Brown 은 비등방성 재료의 강도에 대해 연구하였고 순수암(intact rock)의 강도에 대한 경험적인 기준을 제안하였다. (중략)

  • PDF

Experimental and Analytical studies on Failure Behavior of Stud Shear Connectors in CFT Structures (CFT 구조에 적용된 스터드 전단연결재의 파괴 거동에 대한 실험 및 해석적 연구)

  • Lee, Sangyoon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.400-412
    • /
    • 2013
  • For the composite behavior of steel tube and inner concrete, the shear connectors should be applied to the CFT structures. However, the present design codes don't provide the design criteria that can be applied on shear connectors in the CFT structures typically filled with plain concrete. This study has been carried out to propose design criteria (shear strength and resistance factor) for the stud shear connectors in CFT structures. Experimental tests using the push-out specimens with the plain concrete blocks and finite element analysis were conducted for the purpose of verifying the main failure mode to propose the shear strength of studs in CFT structures. From the results of this study, the main failure mode of studs in CFT structures is splitting crack of concrete and this failure mode reduces shear strength of studs in CFT structures relatively to those embedded in RC blocks.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

A Comparative Study of Simplified Probabilistic Analysis Methods for Plane Failure of Rock Slope (암반사면의 평면파괴해석을 위한 간이 확률론적 해석 비교연구)

  • Kim, Youngmin
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.360-373
    • /
    • 2021
  • Many sources of uncertainty exist in geotechnical analysis ranging from the material parameters to the sampling and testing techniques. The conventional deterministic stability analysis of a plane failure in rock slope produce a safety factor but not a probability of failure or reliability index. In the conventional slope stability analysis by evaluating the ground uncertainty as an overall safety factor, it is difficult to evaluate the stability of the realistic rock slope in detail. This paper reviews some established probabilistic analysis techniques, such as the MCS, FOSM, PEM, Taylor Series as applied to plane failure of rock slopes in detail. While the Monte - Carlo methods leads to the most accurate calculation of the probability of safety, this method is too time consuming. Therefore, the simplified probability methods could be alternatives to the MCS. In this study, using these simple probability methods, the failure probability estimation of a plane failure in rock slope is presented.

An Analysis of Outflow Hydrograph Resulting from an Earth Dam-Break (Earth Dam의 파괴로 인한 유출수문곡선의 해석)

  • Han, Kun Yeun;Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.41-50
    • /
    • 1985
  • The mathematical analysis of the outflow hydrograph resulting from earth dam-break was studied. DBFW(Dam Break Flood Wave) model based on the breach mechanism and reservoir storage equation was developed and was applied to the Teton and Buffalo-Creek dam. The modeling results showed that the shape of outflow hydrograph, peak discharge and failure duration time had a good agreement with the data analyzed by NWS. The breach mechanisms which exert influence on the outflow hydrograph were consisted of geomorphological characteristics of the reservoir, breach mode, breach width and failure duration time. The earth dams in Korea were classified into four types by the reservoir geomorphology, and water surface elevation-failure duration time-peak discharge relationships were also presented. The methodological procedure made in this paper will provide a basic contribution to dam-break study in river system.

  • PDF

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.