• Title/Summary/Keyword: 파괴 인성.

Search Result 781, Processing Time 0.023 seconds

Evaluation of Shape Parameter Effect on the J-R Curve of Curved CT Specimen Using Limit Load Method (한계하중법을 이용한 Curved CT 시험편의 파괴저항곡선에 미치는 형상변수 영향 평가)

  • Shin, In Hwan;Park, Chi Yong;Seok, Chang Sung;Koo, Jae Mean
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.757-764
    • /
    • 2014
  • In this study, the effect of shape parameters on the J-R curves of curved CT specimens was evaluated using the limit load method. Fracture toughness tests considering the shape factors L/W and $R_m/t$ of the specimens were also performed. Thereafter, the J-R curves of the curved CT specimens were compared using the J-integral equation proposed in the ASTM (American Society for Testing and Materials) and limit load solution. The J-R curves of the curved CT specimens were also compared with those of the CWP (curved wide plate), which is regarded to be similar to real pipe and standard specimens. Finally, the effectiveness of the J-R curve of each curved CT specimen was evaluated. The results of this study can be used for assessing the applicability of curved CT specimens in the accurate evaluation of the fracture toughness of real pipes.

Review on the Effects of Material Heterogeneity on Fracture Toughness in Steel Weldment (재질적 불균질이 강용접부의 파괴인성에 미치는 영향에 관한 고찰)

  • Jang J.-i.;Yang Y.-c.;Kim W.-s.;Lee B.-W.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.1-10
    • /
    • 1999
  • The evaluation of fracture toughness in weldment is necessary for the safety performance of industrial structures with large scale such as various power plants, LNG (liquefied natural gas) storage tanks, etc. It is generally known that weldments have material heterogeneity, which results in the serious changes in fracture characteristics of HAZ (heat-affected zone). Nevertheless, the systematic study on material heterogeneity of weldment has not been performed yet in Korea. Therefore in this paper, the effects of material heterogeneity on the fracture toughness of structural steel HAZ were introduced and reviewed.

  • PDF

Fracture Toughnesses of Mortar and Concrete Through the Splitting Tensile Tests with Various Sizes of Specimens (크기가 다른 원형공시체의 할렬인장 실험을 통한 모르타르와 콘크리트의 파괴인성연구)

  • 김진근;구헌상;임선택
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.89-95
    • /
    • 1990
  • Possibility for the evaluation of fracture properties of mortar and concrete by splitting tensile test was stud¬ied. Splitting tensile tests were conducted to obtain the fracture loads for several sizes of cylindrical specimens of mortar and concrete with initial notch. From the results, fracture energy and fracture toughness by SEL were obtained and compared with the values by Rooke and Cartwright, and r.E.Moo The values by SEL method converged effectively. SEL method was shown to be a good method to obtain fracture properties of mortar and concrete.

2상영역열처리를 이용한 원자로 압력용기강의 인성 향상

  • 김홍덕;홍준화;국일현;안연상;김길무
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.11-16
    • /
    • 1997
  • 원자로 압력용기강의 제조열처리인 ?칭과 템퍼링 중간에 페라이트와 오스테나이트가 공존하는 영역에서 2상영역열처리를 추가한 후 템퍼링조건을 조정함으로써 파괴인성을 향상시키는 열처리 공정을 개발하였다. 새 열처리공정을 적용하면 기존공정에 비하여 강도는 크게 감소하지 않으면서 충격인성과 연성이 크게 증가하고, 천이온도가 약 2$0^{\circ}C$ 감소하였다. 2상영역열처리를 하면 연한 템퍼드 베이나이트 기지에 비교적 강한 템퍼드 마르텐사이트가 균일하게 분산된 복합조직을 얻을 수 있고, 유효 결정립의 크기가 감소하여 균열진전이 억제되었다. 또한 기존공정의 판상 탄화물 대신 구형 탄화물이 형성되기 때문에 응력집중이 완화되어 파괴저항성이 향상되었다. 그리고 2상 영역열처리후 템퍼링 정도를 낮추면 탄화물 크기가 작아지기 때문에 균열발생이 억제되어 저온 충격인성이 향상되었다.

  • PDF

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Beam-Type Bend Specimen for Interlaminar Fracture Toughness of Laminated Composite under Mixed-Mode Defmrmations (보 형태의 굽힘시편을 이용한 적층복합재료의 혼합모우드 층간파괴인성 평가)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.911-920
    • /
    • 1989
  • It this study, beam-type bend specimen is used to evaluate the interlaminar fracture toughness of laminated composite under mixed-mode deformations. The specimen is loaded under three-point bending and hence produced mixed-mode deformations in the vicinity of the crack tip according to the variation of the thickness ratio on delamination plane. Total energy release rate is obtained by elementary beam theory considering the effect of shear deformation. The partitioning of total value into mode-I and mode-II components is also performed. The mixed-mode interlaminar fracture toughness is evaluated by experiments on specimens with several thickness ratios of delamination plane. As the part of delamination plane is thicker, the effect of shear deformation on total energy release rate is increased. Beam-type bend specimen men may be applied to obtain informations on the mixed-mode interlaminar fracture behavior of laminated composites.