• Title/Summary/Keyword: 파고라

Search Result 941, Processing Time 0.021 seconds

A Study on the Behavioral Characteristics of the Users and Preferences of the Bench and Pergolas in Busan Citizens' Parks (부산시민공원의 벤치 및 파고라 이용자 행태 특성 및 선호도 연구)

  • Wang, Dan;Yoon, Ji-Young
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.658-670
    • /
    • 2018
  • Busan Citizen Park has been taken as the research object in this paper to learn about the categories and types of resting facilities such as seats and Pergolas in the park and analyze the visitors' use patterns of bench and Pergolas. In addition, the analysis of the cultural features and preferences of bench and Pergolas will provide the basic data for the future design of resting facilities. After the research on the categories and types of bench and Pergolas and the evaluation factors through literature surveys, the type, location, and number of resting facilities including bench, Pergolas, sheds, etc. in the entire park have been investigated through field surveys. In addition, the behavioral map analysis has been created through the observation of the use patterns of bench and Pergolas in the morning and afternoon of each month, and the degree of preference and satisfaction of park bench and Pergolas has been grasped through questionnaires. The research results are as follows. Among the ten types of bench and Pergolas, the citizens like the mats and awnings + mats best. The environment is the most important factor for the mats with highest score, followed by the functional and regional factors. In addition, various activities such as eating in mats and sheds that block sunlight are Korean use patterns, which is very common in Korean daily life. These results show that bench and Pergolas in urban parks are not placed arbitrarily and the layout and design of bench and Pergolas should be completed based on behavior and preferences, which are influenced by cultural characteristics.

Probability Distribution of Nonlinear Random Wave Heights Using Maximum Entropy Method (최대 엔트로피 방법을 이용한 비선형 불규칙 파고의 확률분포함수)

  • 안경모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.204-210
    • /
    • 1998
  • This paper presents the development of the probability density function applicable for wave heights (peak-to-trough excursions) in finite water depth including shallow water depth. The probability distribution applicable to wave heights of a non-Gaussian random process is derived based on the concept of the maximum entropy method. When wave heights are limited by breaking wave heights (or water depth) and only first and second moments of wave heights are given, the probability density function developed is closed form and expressed in terms of wave parameters such as $H_m$(mean wave height), $H_{rms}$(root-mean-square wave height), $H_b$(breaking wave height). When higher than third moment of wave heights are given, it is necessary to solve the system of nonlinear integral equations numerically using Newton-Raphson method to obtain the parameters of probability density function which is maximizing the entropy function. The probability density function thusly derived agrees very well with the histogram of wave heights in finite water depth obtained during storm. The probability density function of wave heights developed using maximum entropy method appears to be useful in estimating extreme values and statistical properties of wave heights for the design of coastal structures.

  • PDF

장보고 시설사업에서의 실시간 파고예측시스템 개발 및 적용

  • Heo, Jin-Uk;Choe, Han-Rim;Park, Seung-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.55-56
    • /
    • 2018
  • 대규모 해군 사업인 장보고-III 시설사업의 간략한 사업개요와 공사시 또는 완공후의 원활한 시설운용을 위한 파고예측시스템을 개발 및 적용하였다. 진해만의 지리적 특성을 고려하여 풍파가 주요파라메타로 설정하였으며, 인근 기상대 바람예보 자료를 활용하여 주요지점에 대해 파고를 예측할 수 있는 시스템을 개발하였으며, 향후 공사시 활용할 수 있다. 또한, 특정사업 및 특정 지역에 대한 간략 파고예측시스템의 제작으로 시공 및 현장에 유익한 정보 전달이 가능하다.

  • PDF

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

A Capacitance Wavestaff for the Use near Surf Zone (쇄파역에서의 사용을 위한 주상 파고계 제작)

  • Oh, Im Sang;Lee, Young Ro
    • 한국해양학회지
    • /
    • v.23 no.2
    • /
    • pp.53-61
    • /
    • 1988
  • A capacitance wavestaff system was devised, which is suitable for the wave measurement near to surf zone. Laboratory tests show that the performance of the wavestaff is not significantly affected by the sea water characteristics such as temperature and salinity, and output signals of the wavestaff are linearly proportional to sea surface elevations. The major error source of the wavestaff system is the improper setting of the wavestaff in field experiment.

  • PDF

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

A Comparative Study of Wave Height around Ulleungdo using the Radar (레이더식 파랑계를 이용한 울릉도 주변해역 파고 비교분석)

  • Kim, Chang-Su;Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.119-120
    • /
    • 2019
  • In order to verify the accuracy of wave measurement of the wave instrumentation system using X-band navigation radar, The validity of the results was obtained by analyzing the significant wave height around Ulleungdo. Especially, The correlations between the radar, wave height buoy and marine buoy for wave measurements were analyzed in season.

  • PDF

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.

Numerical Analysis of Nonlinear Shoaling Process of Random Waves - Centered on the Evolution of Wave Height Distribution at the Varying Stages of Shoaling Process (불규칙 파랑 비선형 천수 과정 수치해석 - 천수 단계별 파고분포 변화를 중심으로)

  • Kim, Yong Hee;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.106-121
    • /
    • 2020
  • In order to make harbor outskirt facilities robust using the reliability-based design, probabilistic models of wave heights at varying stage of shoaling process optimized for Korean sea waves are prerequisite. In this rationale, we numerically simulate the nonlinear shoaling process of random waves over the beach with a sandbar at its foreshore. In doing so, comprehensive numerical models made of spatially filtered Navier-Stokes Eq., LES [Large Eddy Simulation], dynamic Smagorinsky turbulence closure were used. Considering the characteristics of swells observed at the east coast of Korean Peninsula, random waves were simulated using JONSWAP wave spectrum of various peak enhancement coefficients and random phase method. The coefficients of probabilistic models proposed in this study are estimated from the results of frequency analysis of wave crests and its associated trough detected by Wave by Wave Analysis of the time series of numerically simulated free surface displacements based on the threshold crossing method. Numerical results show that Modified Glukhovskiy wave height distribution, the most referred probabilistic models at finite water depth in the literature, over-predicts the occurring probability of relatively large and small wave heights, and under predicts the occurrence rate of waves of moderate heights. On the other hand, probabilistic models developed in this study show vary encouraging agreements. In addition, the discrepancy of the Modified Glukhovskiy distribution from the measured one are most visible over the surf zone, and as a result, the Modified Glukhovskiy distribution should be applied with caution for the reliability-based design of harbor outskirt facilities deployed near the surf-zone.

Joint Distribution of Wave Crest and its Associated Period in Nonlinear Random Waves (비선형 파동계에서의 파고와 주기 결합 확률분포)

  • Park, Su Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-293
    • /
    • 2019
  • The joint distribution of wave height and period has been maltreated despite of its great engineering value due to the absence of any analytical model for wave period, and as a result, no consensus has been reached about the effect of nonlinearity on these joint distribution. On the other hand, there was a great deal of efforts to study the effects of non-linearity on the wave height distribution over the last decades, and big strides has been made. However, these achievements has not been extended to the joint distribution of wave height and period. In this rationale, we first express the joint distribution of wave height and period as the product of the marginal distribution of wave heights with the conditional distribution of associated periods, and proceed to derive the joint distribution of wave heights and periods utilizing the models of Longuet-Higgins (1975, 1983), and Cavanie et al. (1976) for conditional distribution of wave periods, and height distribution derived in this study. The verification was carried out using numerically simulated data based on the Wallops spectrum, and the nonlinear wave data obtained via the numerical simulation of random waves approaching toward the uniform beach of 1:15 slope. It turns out that the joint distribution based on the height distribution for finite banded nonlinear waves, and Cavanie et al.'s model (1976) is most promising.