• Title/Summary/Keyword: 티타늄-세라믹 보철

Search Result 5, Processing Time 0.023 seconds

Surface Characteristics of Metallic 3D Printed Dental Framework (금속 3D printing으로 제작한 치과보철물의 표면특성)

  • Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.21-21
    • /
    • 2018
  • 다양한 소재(금속, 세라믹, 고분자 소재 등)들이 3차원 형상기반 적층제조법에 적용되고 있는데, 금속 소재를 이용하여 3D 프린팅 법으로 치과용 수복물을 제조하는 연구가 많이 보고되고 있다. 하지만, 티타늄 또는 티타늄 합금 분말을 이용하여 3D 프린팅 법으로 제작한 치과용 보철물에 관한연구 보고는 많지 않다. Kanazawa 등 (2014)은 Ti-6Al-4V 합금분말을 이용하여 SLM법으로 총의치 용 framework를 제작하여 주조법으로 제작한 것과 비교 평가하였고, Mangano 등(2013)은 Ti-6Al-4V 합금분말로 지름이 작은 일체형 (1-piece narrow-diameter) 임플란트를 SLS법으로 제작하여 16명의 환자에게 식립한 다음, 2년간 관찰하였고, Mangano 등 (2014)은 cone-beam computed tomography (CBCT) data를 3D이미지로 변환시켜 DLMS법으로 치근 형상의 임플란트를 제작하여 15명의 환자에게 식립한 다음, 1년간 관찰하였다. 또한 서울대학교 및 연세대학교 치과생체재료과학교실 (2016)에서는 3D 프린팅 법으로 제작한 티타늄 시편과 기계 가공한 티타늄 시편의 물성을 비교하였다. 그러나 티타늄 합금 분말을 이용하여 3D 프린팅 법으로 제작한 치과용 보철물을 실제 임상에 적용하는 단계에서 기존 기계가공 방식으로 제작한 티타늄 보철물과 3D 프린팅 법으로 제작한 티타늄 보철물의 물성과 표면특성을 다양하게 비교 평가하는 것이 필요하여 본 연구에서는 3D 프린팅 법으로 제작한 티타늄 시편과 기계 가공한 티타늄 시편의 물성특성과 표면특성을 비교하여 조사하였다.

  • PDF

Effect of Surface Treatments and Glazing Temperatures on Bond Strength and Color Reproducibility in Titanium-Ceramic Prosthesis (티타늄의 표면처리와 저온용융도재의 글레이징 온도에 따른 티타늄-세라믹 보철물의 전단결합강도와 색조재현성)

  • Chung, In-Sung;Lee, Do-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.243-250
    • /
    • 2010
  • The bonding strength and color reproducibility of titanium-ceramic prosthesis were analyzed the effect according to the surface treatments of titanium and the glazing temperatures of the low fused porcelain. The result of bonding strength compared with respect to the surface treatments was observed that the STB1 group coated by TiN had strongest boding strength and then came the SB1 group used special bonding agent, the SGB1 group coated by gold in that order. The bonding strength by the glazing temperature was indicated that the group with $770^{\circ}C$ of glazing temperature was observed increasing the bonding strength as compared with it of the other group, and the group with $810^{\circ}C$ of glazing temperature was observed to be decreased the bonding strength. Glazing temperature increases, the color by the surface treatment of titanium influenced the color of titanium-ceramic on account of getting higher brightness(${\Delta}L$). As a this result, the SB1 and SGB3 groups was evaluated to has the best color reproducibility.

Effect of Surface Treatments of Titanium on Bond Strength and Interfacial Characterization in Titanium-Ceramic Prosthesis (티타늄의 표면처리방법에 따른 티타늄-세라믹 보철시편의 결합강도와 계면특성)

  • Chung, In-Sung;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.219-225
    • /
    • 2010
  • The bonding strength between titanium and ceramic were analyzed according to the bonding agent and the coating methods of Au and TiN respectively. The bonding strength was measured through the 3 point bending test. Consequently, the bonding strength of the special bonding agent after the TiN coated (SPTB) group was $72.20({\pm}5.25)MPa$ which was the strongest one among groups. The bonding strength of the special bonding agent treated only (SPB) group was $67.66({\pm}12.10)MPa$, the special bonding agent after the Au coating SPGB group was $46.95({\pm}12.48)MPa$ and the SP group was $43.80({\pm}5.12)MPa$. Taking these results into account, the bonding strength of the SPB group shows the same as it of the SPTB group, however, it is stronger than SP group. And the TiN coated SPTB group shows the stronger bonding strength than the Au coated SPGB group.

Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment (지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석)

  • Yun, Mi-Jung;Kim, Chang-Weop;Jeong, Chan-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.

Fracture resistance of zirconia and resin nano ceramic implant abutments according to thickness after thermocycling (지르코니아와 레진나노세라믹 임플란트 지대주의 두께에 따른 열순환 후 파절저항)

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Purpose: The aim of this in vitro study is to investigate load bearing capacity of esthetic abutments according to the type of material and wall thickness. Materials and methods: 70 specimens equally divided into seven groups according to their abutment wall thicknesses. The abutments prepared with titanium 0.5 mm wall thickness were used as a control group (Ti-0.5), whereas zirconia abutments and resin nano ceramic abutments with wall thickness 0.5 mm, 0.8 mm and 1.0 mm were prepared as test groups (Zir-0.5, Zir-0.8, Zir-1.0 and RNC-0.5, RNC-0.8, RNC-1.0). All specimens were tested in a universal testing machine to evaluate their resistance to fracture and all of them underwent thermo-cycling before loading test. Mean fracture values of the groups were measured and statistical analyses were made using two-way ANOVA. Results: Zir-1.0 showed the highest mean strength ($2,476.3{\pm}342.0N$) and Zir-0.8 ($1,518{\pm}347.9N$), Ti-0.5 ($1,041.8{\pm}237.2N$), Zir-0.5 ($631.4{\pm}149.0N$) were followed. The strengths of RNC groups were significantly lower compared to other two materials (RNC-1.0 $427.5{\pm}72.1$, RNC-0.8 $297.9{\pm}41.2$) and the strengths of all the test groups decreased as the thickness decreases (P < .01). RNC-0.5 ($127.4{\pm}35.3N$) abutments were weaker than all other groups (P < .05). Conclusion: All tested zirconia abutments have the potential to withstand the physiologic occlusal forces in anterior and posterior regions. In resin nano ceramic abutments, wall thickness more than 0.8 mm showed the possibility of withstanding the occlusal forces in anterior region.