• Title/Summary/Keyword: 티타늄합금

Search Result 225, Processing Time 0.023 seconds

Laser-Induced Plasma Spectroscopy Measurement on Surface Roughness in Surface Treatment of Titanium Alloys (티타늄 합금의 표면 처리에 있어 표면 거칠기에 대한 레이저 유도 플라즈마 분광분석법 측정 적용 연구)

  • Kim, Ji-Hun;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2020
  • In this study, the surface changes of titanium alloy using laser surface treatment and the surface analysis using laser-induced plasma spectroscopy were carried out. The laser surface treatment induced changes in surface roughness and the diffusion of atmospheric elements. Excessive melting or less melting caused roughness changes, but when moderate levels of energy were applied, a smoother surface could be obtained than the initial surface. In the process, the diffusion of atmospheric elements took place. To analyze the diffusion of atmospheric elements with respect to surface morphology, the surfaces were re-shaped with grinding. In this experimental conditions, the effect of plasma formation by surface roughness was identified. Compensated plasma signals for the material properties were obtained and analysed by removing the background plasma signal.

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

A Study on the Hydrogen treatment of It and Ti-pd Alloy (티타늄 및 티나늄-팔라듐 합금의 수소처리에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.15 no.1
    • /
    • pp.5-25
    • /
    • 1993
  • Effects of hydrogenation on microstructure and mechanical properties of pure Ti and Ti-0.15Pd alloy have been studied by means of optical microscopy, differential scanning calorimeter(DSC), Xray diffraction and micro vicker's hardness test. Grain size of pure Ti and Ti-0.15Pd alloy decresed largely by hydrogenation finer than that of pure Ti and the grain size refinement was evedent in Ti-0.15Pd alloy than that in pure Ti. Ti-.015Pd alloy carried out solution treatment at 950$^{\circ}C$, the transformation of $\alpha$' martensite was occured. The amount of Hydrogen absorption in Ti-.015Pd alloy was higher than that in pure Ti. Decomposition of hydride in pure titanium and Ti-0.15Pd alloy increased largely by hydrogenation, and micro vicker's hardness of Ti-.015Pd alloy was largely than that of pure Ti by 30% after hydrogenation. The micro vicker's hardness of Ti-0.15Pd alloy after solution treatment and dehydrogenation were higher at $\beta$ phase ranger(950$^{\circ}C$) than that phase range(750$^{\circ}C$).

  • PDF

The Evaluation of Mechanical properties on the Changes of Microstructure for Titanium Alloy (Ti-6Al-4V) (티타늄 합금(Ti-6Al-4V)의 조직변화에 따른 기계적 특성 평가)

  • Kwon, Jae-Do;Bae, Yong-Tak;Choi, Sung-Jong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • The characteristics of mechanical behavior were estimated for Ti-6Al-4V alloy with four kinds of microstructure prepared with heat treatments. For this study, impact test, tensile test and fatigue crack growth test were performed, and then compared mechanical properties on the four microstructures. Furthermore, for quantitative evaluation, fractal dimensions of crack pass were obtained using the box counting method. The main results obtained are summarized as follows. (1) The microstructures exhibited equiaxed microstructure, bimodal-microstructure and lamellar microstructure by heat treatment. (2) The impact absorbed energy and elongation is superior in the bimodal-microstructure, and the hardness and tensile strength are superior in the lamellar microstructure. (3) The fatigue crack growth rate is similar to all microstructures in the low ${\Delta}K$ region. The fatigue crack growth rate of equiaxed microstructure is fastest, and that of lamellar microstructure is lowest in the high ${\Delta}K$ region. (4) The fractal dimension D of lamellar microstructure is higher then that of the equiaxed microstructure and bimodal microstructure.

  • PDF

Sustainability Analysis in Titanium Alloy Machining (항공용 티타늄 합금 가공 공정의 지속가능성 평가)

  • Lee, Jin-Hyeok;Kim, Ho-Yung;Yoon, Hae-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2019
  • Titanium alloys have been spotlighted in numerous industries owing to their superior mechanical properties, such as high specific strength. However, the high heat and wear resistance of titanium alloys also lower their machinability and limit the wider application of the material. Many researchers have investigated the processing of titanium alloys, and it is required to evaluate the effectiveness and efficiency of developed technologies. From this perspective, this research studied sustainability in titanium alloy machining. The power consumption of the machine was measured during the process and analyzed in terms of process parameters and individual machine components. Here, an end mill specially designed for titanium was also investigated and compared with a general-purpose cutting tool. Based on the experimental results, a model was constructed to predict the power consumption of the overall process. It is expected that this study will contribute to the more effective and efficient processing of titanium alloys.

Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure (액체질소 분사 안정화를 통한 극저온가공 품질 향상)

  • Gang, Myeong Gu;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

A Study on the Improvement of Physical Properties for Titanium Alloy by the Grinding Conditions (연삭가공조건에 따른 티타늄 합금의 물성치 향상에 관한 연구)

  • Kim, Won Il;Lee, Yun Kyung;Wang, Duck Hyun;Heo, Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2001
  • Ti-6Al-4V alloy can be obtained the stability of organization and product treasure, the evaluation of the cutting ability and the mechanical characteristics after the heat treatment of annealing, solution and aging. The difficulty in machining titanium alloy is how treat the heat generated during the process. Because the heat conductivity of titanium alloy is regardfully low, the heat generated during grinding is accumulated in workpiece. and it causes the increasing of grinding wheel grits' wear and makes the ground surface rough. So, these characteristics in grinding of titanium alloy will change the mechanical properties of the titanium alloy. From this study. the mechanical characteristics of annealed one and solution and aging one treated Ti-6Al-4V alloy after grinding was concerned with checking out the bending strength and hardness. For the result, both of bending strength and hardness were increased at the burned area on the surface. Roughness value was remarkably high at the table speed of 10m/min.

  • PDF

Creep Behaviour of Solution Treated Alpha Titanium Alloy for Automotive Parts (자동차부품 소재개발을 위한 알파 티타늄 합금의 용체화 처리후 정적 크리프 거동)

  • Hwang Kyungchoong;Yoon Jongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.153-158
    • /
    • 2005
  • Titanium alloy has widely been used as material for automotive parts because it has high specific strength. It is also light and harmless to human body. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with low different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the fallowing results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 7.5. And for the last, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture.

Effects of carbon content and Titanium Addition on Damping Capacity in Fe-17wt%Mn Alloy (Fe-17wt%Mn 합금의 진동감쇠능에 미치는 탄소와 티타늄 첨가의 영향)

  • Baik, S.H.;Kim, J.C.;Jee, K.K.;Shin, M.C.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • Effects of carbon and Ti on damping capacity are investigated in an Fe-17%Mn alloy. The suppressive force of carbon against ${\gamma}{\rightarrow}{\varepsilon}$ transformation increases linearly with an increase in its content, lowering Ms temperature and volume fraction of ${\varepsilon}$ martensite. Carbon deteriorates damping capacity by reducing the interfacial area of damping sources and mobility of the boundaries contributing to anelastic deformation. The reduction in damping capacity is accelerated when carbon-containing alloy is aged at higher temperatures above room temperature. The effect of Ti on damping capacity is found to be benificial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

  • PDF

Effect of Hydrofluoric Acid on the Electrochemical Properties of Additive Manufactured Ti and Its Alloy (적층가공된 티타늄 합금의 전기화학적 특성에 미치는 불산의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.166-175
    • /
    • 2018
  • In this study, the electrochemical properties of CP-Ti (commercially pure titanium) and Ti-64 (Ti-6Al-4V) were evaluated and the effect of hydrofluoric acid on corrosion resistance and electrochemical properties was elucidated. Additive manufactured materials were made by DMT (Directed Metal Tooling) method. Samples were heat-treated for 1 hour at $760^{\circ}C$ and then air cooled. Surface morphologies were studied by optical microscope and SEM. Electrochemical properties were evaluated by anodic polarization method and AC-impedance measurement. The oxide film formed on the surface was analyzed using an XPS. The addition of HF led to an increase in the passive current density and critical current density and decreased the polarization resistance regardless of the alloys employed. Based on the composition of the oxide film, the compositional difference observed by the addition of HF was little, regardless of the nature of alloys. The Warburg impedance obtained by AC-impedance measurement indicates the dissolution of the constituents of CP-Ti and Ti-64 through a porous oxide film.