• 제목/요약/키워드: 특징벡터 선택 알고리즘

검색결과 69건 처리시간 0.03초

GA에 의한 특징 선택에 따른 Support Vector Machines을 이용한 얼굴 인식 (Face Identification using Support Vector Machines with Features Set extracted by Genetic Algorithm)

  • 이경희;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.458-460
    • /
    • 2000
  • 본 논문에서는 유전자 알고리즘(GA)과 Support Vector Machine(SVM)을 결합하여 사용한 얼굴 인식 시스템을 제안한다. 기존의 SVM을 이용한 얼굴 인식 연구에서는 얼굴 전체 영상을 SVM의 입력벡터로 사용하는데 반해, 본 연구에서는 GA를 이용하여 얼굴 영상 중에서 개인별로 식별 능력이 우수한 특징들만을 선택하여 이를 SVM의 입력벡터로 사용한다. 조명, 표정, 안경 착용 등 다양한 변화가 있는 Yale 얼굴 데이터베이스를 사용하여 실험한 결과, 얼굴 전체 영상을 사용한 경우보다 더 좋은 인식률을 보였다. 또한 제안된 방법에 의한 얼굴 인식 시스템은 각 개인별로 식별력이 우수한 특징들만을 저장하므로, 얼굴인식 시스템을 구성하기 위해 저장될 정보의 양이 현저하게 감소하게 된다.

  • PDF

곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식 (Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG)

  • 이영학;고주영;석정희;노태문;심재창
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.654-662
    • /
    • 2010
  • 본 논문은 2단계 연속(cascade) 방법을 이용한 향상된 보행자/비보행자 인식 알고리즘을 제안한다. 인식을 위한 분류기로는 약한 분류기를 강한 분류기로 만드는 아다부스트 알고리즘을 적용하였다. 먼저 두 가지 특징벡터를 추출 한다: (i) 기존의 기울기 히스토그램(HOG) 특성과 (ii) 한 점이 가지는 곡률특성 네 가지를 이용한 곡률-HOG를 제안하고 이용하였다. 그 다음 훈련 영상을 통하여 두 가지의 특징 벡터에 대해 약한 분류기로부터 강한 분류기를 얻었으며, 인식은 입력 영상으로부터 하나의 특징을 선택하여 이미 만들어진 강한 분류기를 통하여 1차적인 인식과 오인식을 실시하며, 오인식된 영상에 대해 2차적인 특징을 투입하여 이에 해당하는 강한 분류기를 통하여 2단계 아다부스트 알고리즘을 적용하여 최종적인 인식결과를 얻는다. 두 가지의 서로 다른 특성 벡터를 이용하여 연속 방법에 의한 2단계 아다부스트 알고리즘을 적용한 결과 기존의 실험 방법보다 더 정확한 인식 결과를 얻을 수 있었다.

제한된 자원을 갖는 장치에서 효과적인 얼굴 인증 방법 (An Effective Face Authentication Method for Resource - Constrained Devices)

  • 이경희;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1233-1245
    • /
    • 2004
  • 사용자를 인증하는데 생체인식(biometrics)을 사용하는 것은 보안성과 편리성에서 우수함에도 불구하고, 생체 정보를 사용하는 전형적인 인증 알고리즘은 스마트카드(smart cards)와 같은 자원이 한정된 장치에서는 실행되지 못할 수도 있다. 따라서, 제한된 자원을 갖는 장치에서 생체인식 과정이 수행되기 위해서는 적은 메모리와 처리 능력을 요구하는 가벼운 인증 알고리즘의 개발이 필요하다. 또한 생물학적 특징들 중에서 얼굴에 의한 인증은 인간에게 보다 친숙하고 얼굴 영상 획득이 비강제성을 띤다는 점에서 사용하기 가장 편리한 생체인식 기술이다. 본 논문에서는 생체인식 기술 연구의 일환으로 새로운 얼굴 인중 알고리즘을 제안한다. 이 얼굴 인증 알고리즘은 두 가지 면에서 새로운 특성을 갖는다. 그 하나는 유전자 알고리즘(GA: Genetic Algorithms) 에 의해 추출된 특징 집합(feature set)을 입력벡터로 사용하는 Support Vector Machines(SVM)을 얼굴인증에 이용함으로써 메모리 요구량을 감소시킨다는 것이다. 다른 하나는, 필요에 따라 특징 집합의 크기 조절에 대한 시스템 파라미터를 조절함으로써, 인식률은 다소 감소하더라도 인증 과정에 필요한 메모리양을 더욱 더 감소시킬 수 있다는 것이다. 이러한 특성은 메모리양이 한정된 장치에서 얼굴 인중 알고리즘을 수행할 수 있게 하는 데 상당히 효과적이다. 다양한 변화가 있는 얼굴 데이터베이스들에 대하여 실험한 결과, GA에 의해 선택된 식별력이 우수한 특징들을 SVM의 입력벡터로 사용하는 제안한 얼굴 인증 알고리즘이, GA에 의한 특징 선택 과정이 없는 알고리즘보다 정확성과 메모리 요구량에서 우수한 성능을 보임을 알 수 있다. 또한 시스템 파라미터의 변경 실험에 의해 선택될 특징의 개수가 조절될 수 있음을 보인다.

음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘 (New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification)

  • 최택성;문선국;박영철;윤대희;이석필
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.111-118
    • /
    • 2008
  • 본 논문에서는 음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘을 제안한다. 제안된 알고리즘은 모든 가능한 노드들의 분류 확률을 예측하여 예측된 분류 성능값이 가장 좋은 조합을 Taxonomy로 구축하는 것이다. 제안된 알고리즘에서의 분류 확률 예측은 훈련 데이터를 k-fold cross validation을 이용하여 분류기에 적용함으로써 이루어진다. 제안된 알고리즘을 기반으로 한 분류 성능 측정은 2 클래스로 이루어진 각각의 노드에 2개 범주 분류에 효과적인 support vector machine을 적용함으로써 이루어진다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 알고리즘과 기존의 다중 범주 분류기들을 이용하여 분류성능을 평가하였다. 다양한 실험결과 제안된 알고리즘은 기존의 알고리즘에 비하여 5%에서 25%정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터를 이용한 분류 실험에서는 10% 에서 25% 향상된 좋은 성능을 보였다.

초기 코드백터 결정에 의한 LBG 알고리즘의 성능 개선 (Improvement of performance for the LBG algorithm by the decision of initial codevectors)

  • 홍지훈;조제황
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.16-29
    • /
    • 1995
  • LBG 알고리즘은 국소적 최적 코드북 만을 보장하기 때문에 초기 코드벡터의 결정이 코드북의 성능을 결정한다. 본 논문에서는 초기 코드벡터의 결정에 있어서 이산여현변환 후에 발생되는 DC 항, 저주파 항, 중간주파 항, 그리고 고주파 항을 특징벡터로 하여 결정반지름에 의한 초기 코드벡터 결정 방법을 제안한다. 결정반지름이 증가함에 따라 소속되는 벡터수와 초기 코드벡터의 거리 표준편차가 증가함을 알 수 있다. 초기 코드백터의 결정에 있어서 DC 항은 $128\times128$ 영상과 $256\times256$ 영상의 모든 경우에 있어서 소속률이 0.9 이상인 결정반지름을 선택하고, 저주파 항, 중간주파 항, 그리고 고주파 항은 소속률이 약 0.6 이하의 결정반지름을 선택할 때 보다 우수한 성능의 코드북을 얻을 수 있다.

  • PDF

MPEG-7 오디오 하위 서술자를 이용한 음악 검색 방법에 관한 연구 (A Study on the Music Retrieval System using MPEG-7 Audio Low-Level Descriptors)

  • 박만수;박철의;김회린;강경옥
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2003년도 정기총회 및 학술대회
    • /
    • pp.215-218
    • /
    • 2003
  • 본 논문에서는 MPEG-7에 정의된 오디오 서술자를 이용한 오디오 특징을 기반으로 한 음악 검색 알고리즘을 제안한다. 특히 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 Query by humming에 이용 될 수 있다. 이러한 연구를 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다 본 논문에서는 방송 시스템에 적용 할 수 있도록 검색 범위를 특정 컨텐츠의 O.S.T 앨범으로 제한하였다. 즉, 사용자가 임의로 선택한 부분적인 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징벡터를 구성하기 위한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능 평가를 수행한 결과 timbral spectral feature들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 Euclidean distance 방식보다 우수한 성능을 보였다.

  • PDF

손가락 이동에 의해 선택된 영역의 인쇄체 한글 영상 문서화 (Documentation of Printed Hangul Images of the Selected Area by Finger Movement)

  • 백승복;손영선
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.306-310
    • /
    • 2002
  • 본 논문은 글자 문서를 배경으로 사용자의 손가락 이동에 의하여 일정한 영역을 그린 후, 영역내의 한글 영상을 편집 가능 한 에디터에 출력하는 시스템을 구현하였다. 영상의 전처리 단계에서는 문서 배경과 손 영역을 분리하고 최대 원형 이동법을 이용하여 손의 무게 중심점을 추출한다. 원형 패턴 벡터 알고리즘을 사용하여 손을 인식한 후, 거리 스펙트 럼으로 손가 락 위치를 찾는다. 손가락의 움직임에 의해 선택되어진 문자 영역을 추출한 후, 한글 자소 간 히스토그램을 이용하여 추출 된 문자 이미지 영역에서 문자단위로 분할하고 다양한 크기의 문자를 표준화한다. 퍼지 추론을 적용한 원형 패턴 벡터 알고리즘을 이용하여 표준 패턴문자와 입력문자의 특징벡터를 비교하여 문자를 인식하게 함으로써 사용자가 원하는 영역의 문자들을 수정 가능한 문서로 변환하였다.

할선법과 모멘트의 고정점 알고리즘 독립성분분석에 의한 특징추출 (Feature Extraction Using Fixed-Point ICA of Secant Method and Moment)

  • 조용현;김아람;오정은;전윤희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (중)
    • /
    • pp.883-886
    • /
    • 2003
  • 본 연구에서는 할선법과 모멘트의 고정점 알고리즘 독립성분분석을 이용하여 영상의 특징을 추출하는 기법을 제안하였다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $256{\times}256$ 픽셀의 10개 지문영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘 보다도 빠른 특징추출 속도가 있음을 확인하였다 한편 추출된 $16{\times}16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.

  • PDF

Sparse Logistic Regression 기반 비음수 행렬 분석을 통한 성별 인식 (Gender Classification using Non-Negative Matrix Analysis with Sparse Logistic Regression)

  • 허동철;;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.373-376
    • /
    • 2011
  • 얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.

그래픽 하드웨어 가속을 이용한 실시간 색상 인식 (Real-time Color Recognition Based on Graphic Hardware Acceleration)

  • 김구진;윤지영;최유주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권1호
    • /
    • pp.1-12
    • /
    • 2008
  • 본 논문에서는 야외 및 실내에서 촬영된 차량 영상에 대해 실시간으로 차량 색상을 인식할 수 있는 GPU(Graphics Processing Unit) 기반의 알고리즘을 제시한다. 전처리 과정에서는 차량 색상의 표본 영상들로부터 특징벡터를 계산한 뒤, 이들을 색상 별로 조합하여 GPU에서 사용할 참조 텍스쳐(Reference texture)로 저장한다. 차량 영상이 입력되면, 특징벡터를 계산한 뒤 GPU로 전송하고, GPU에서는 참조 텍스쳐 내의 표본 특징리터들과 비교하여 색상 별 유사도를 측정한 뒤 CPU로 전송하여 해당 색상명을 인식한다. 분류의 대상이 되는 색상은 가장 흔히 발견되는 차량 색상들 중에서 선택한 7가지 색상이며, 검정색, 은색, 흰색과 같은 3가지의 무채색과 빨강색, 노랑색, 파랑색, 녹색과 같은 4가지의 유채색으로 구성된다. 차량 영상에 대한 특징벡터는 차량 영상에 대해 HSI(Hue-Saturation-Intensity) 색상모델을 적용하여 색조-채도 조합과 색조-명도 조합으로 색상 히스토램을 구성하고, 이 중의 채도 값에 가중치를 부여함으로써 구성한다. 본 논문에서 제시하는 알고리즘은 다양한 환경에서 촬영된 많은 수의 표본 특징벡터를 사용하고, 색상 별 특성을 뚜렷이 반영하는 특징벡터를 구성하였으며, 적합한 유사도 측정함수(likelihood function)를 적용함으로써, 94.67%에 이르는 색상 인식 성공률을 보였다. 또한, GPU를 이용함으로써 대량의 표본 특징벡터의 집합과 입력 영상에 대한 특징벡터 간의 유사도 측정 및 색상 인식과정을 병렬로 처리하였다. 실험에서는, 색상 별로 1,024장씩, 총 7,168장의 차량 표본 영상을 이용하여 GPU에서 사용하는 참조 텍스쳐를 구성하였다. 특징벡터의 구성에 소요되는 시간은 입력 영상의 크기에 따라 다르지만, 해상도 $150{\times}113$의 입력 영상에 대해 측정한 결과 평균 0.509ms가 소요된다. 계산된 특징벡터를 이용하여 색상 인식의 수행시간을 계산한 결과 평균 2.316ms의 시간이 소요되었고, 이는 같은 알고리즘을 CPU 상에서 수행한 결과에 비해 5.47배 빠른 속도이다. 본 연구에서는 차량만을 대상으로 하여 색상 인식을 실험하였으나, 일반적인 피사체의 색상 인식에 대해서도 제시된 알고리즘을 확장하여 적용할 수 있다.