본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.
시스템을 입력과 출력간의 함수관계로 볼 때 출력에 대한 상대차수가 정의되지 않는 점을 특이점이라고 정의할 수 있다. 본 논문에서는 적절한 기하학적 조건을 만족하는 해석적인 시스템(analytic system)에 대하여 그러한 특이점의 성질을 살펴본다. 특이점을 지나는 궤적은 특이점의 특이도와 그에 관련된 함수 값의 부호에 의해서 특이점의 주변에서는 특이 매니폴드를 기준으로 한 영역에서 나머지 다른 영역으로 통과하거나 혹은 그를 기준으로 어느 한 쪽의 영역에만 머물러 있게 됨을 보임으로써 특이점과 이를 지나는 궤적의 상관관계를 명확히 규명하였다.
본 논문에서는 다층스케일 웨이블릿 변환영역에서의 특이점 검출 및 Lipschitz 정칙 상수를 이용한 블록화 현상 제거 방법을 제안하였다. 블록 부호화된 영상에서 블록화 현상 및 에지와 같은 특이점들은 다층스케일 웨이브릿 변환 영역에서 국부 계수 최대치 (local modulus maxima)로 검출된다. 제안한 방법에서는 국부 계수 최대치의 Lipschitz 정칙 상수를 이용하여 블록화 현상 및 에지의 특이점들을 구분하고, 웨이블릿 변환 영역에서 블록화 현상에 의한 특이점들을 연역에 따라 스케일별로 제거한다. 실험 결과로부터 제안한 방법은 기존의 방법에 비하여 PSRN이 0.046~0.42 dB 향상되었고, 복잡한 영역에서 에지의 불연속성이 제거되므로 객관적 화질 및 주관적 화질 측면에서 성능이 우수함을 확인하였다.
본 논문에서는 특이 칼라 분포에 대한 정보를 활용함으로써 어떠한 사전 지식없이 칼라 영상으로부터 중심 객체를 추출하는 방법에 대해 제안한다. 중심 객체는 영상 중심 부근에 위치하면서 특이 칼라 분포를 갖는 영역들의 집합으로 정의한다. 특이 칼라는 영상 경계 주변에 비해 영상의 중심 위치에서 보다 높은 밀도로 존재하는 칼라로 정의한다. 중심 객체 추출을 위해 우선 특이 칼라 정보를 사용하여 영상 분할된 영역 중에서 객체의 특징을 대표하는 영역들의 집합을 핵심객체영역을 선택한다. 핵심객체영역에 인접하며 이와 높은 칼라 유사도를 갖고 또한 배경이 아닌 영역들을 반복적으로 핵심객체영역에 병합하여 핵심객체영역을 확장함으로써 생성된 최종 병합 결과를 중심 객체로 추출한다. 따라서 중심 객체는 상이한 칼라 특징을 갖는 영역으로 구성될 수 있으며 상호 연결되어 있을 경우에는 두개 이상의 객체가 중심 객체에 포함될 수 있다. 제안된 방법의 타당성 및 중요 칼라의 유용성은 다양한 실험 영상을 통해 확인하였다. 본 논문에서 제안된 방법으로 추출된 중심 객체는 영상 검색 응용 분야에 유용하게 사용될 수 있을 것으로 기대한다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.
모든 암 세포는 체세포 변이를 동반한다. 따라서 암 유전체 변이 분석에 의하여 암을 발생시키는 유전자 및 진단/치료법을 찾아낼 수 있다. 본 연구에서는 차세대 시퀀싱 데이터를 이용하여 암 특이적 단이 반복 변이(copy number variation, CNV) 유형을 밝히는 새로운 알고리즘을 제안한다. 제안하는 방식은 암 환자의 정상 세포와 암세포로부터 얻어진 정상 유전체와 암 유전체를 동시 분석하여 각각 CNV 후보 영역을 추출하며, 통계적 유의성 분석을 통하여 암 특이적 CNV 후보 영역을 선별하고, 다음 후처리 과정에서 참조 표준 서열(reference sequence)에 존재하는 오류 영역 보정 작업을 수행하여 정확한 암 특이적 CNV 영역을 추출해 낸다. 또한 다수의 대용량 유전체 데이터 동시 분석을 위하여 맵리듀스(MapReduce) 기법을 기반으로 하는 병렬 수행 알고리즘을 제안한다.
본 논문에서는 다층스케일 에지로부터 특이점 검출을 이용한 블록화 현상 제거 방법을 제안하였다. 블록 부호화된 영상에서 블록화 현상 및 에지와 같은 특이점들은 다층스케일 웨이블릿 변환 영역에서 국부 계수 최대치로 검출된다. 제안한 방법에서는 국부 계수 최대치의 Lipschitz 정칙 상수를 이용하여 블록화 현상 및 에지의 특이점들을 구분하고, 웨이블릿 변환 영역에서 블록화 현상에 의한 특이점들을 영역에 따라 스케일별로 제거한다. 실험 결과로부터 제안한 방법이 기존의 방법에 비하여 객관적 화질 및 주관적 화질 측면에서 보다 우수함을 확인하였다.
인간 Y 염색체는 엄격히 부계 유전되고 그 길이의 대부분은 남성 감수분열 동안 교차가 일어나지 않는다. 비록 이영역이 비 재조합 영역 Y (non-recombining region Y: NRY)로 불려왔지만, 풍부한 재조합의 발견으로 그것은 남성 특이 영역 (male-specific region Y: MSY)으로 재 명명(命名)되었다. MSY는 이질염색질 (heterochromatin) 서열과 세가지 분류의 진정염색질 (euchromatin) 서열 (X-전위영역, X-퇴화영역, 증폭영역)이 모자이크화 되어있다. X-전위영역의 서열은 X 염색체의 상동 좌위와 약 99% 동일성을 가진다. X-퇴화영역 서열은 고대 상 염색체가 현대의 X와 Y 염색체로 진화되면서 남아 있는 부분이다. 증폭영역의 8개의 회문구조는 인간 Y염색체의 남성 특이영역의 4분의 1을 차지한다. 이들은 많은 정소 특이 유전자를 포함하고, 회문구조서열 사이의 상동성은 약 99.97%이다. 이 회문구조의 양쪽 팔은 계속되는 유전자 교환에 의해 유지되며, 서로 협력하여 진화된다. 새로 태어나는 남성당 평균 약 600 염기당 하나가 Y-Y유전자 교환을 겪고, 정소 특이적 다중유전자군의 진화에 중요한 역할을 한다.
정보 보안의 기수로 떠오른 지문인식 분야는 크게 분류와 인증 단계로 나뉜다. 본 논문은 지문의 분류에 대한 연구결과로, 효율적인 지문 분류를 위해 방향성 이미지로부터 일정 영역내 방향각의 분포도에 대한 분산을 이용한 새로운 지문 분류 알고리즘을 제안한다. 또한 구해진 분산을 토대로 특이점(코아. 델타) 가능 영역을 선정하고 선정된 영역에 대해 의사 특이점을 제거후 지문을 분류하고 마지막으로 실험을 통해 제안된 알고리즘을 검증하고 문제점을 검토해 본다.
본 논문에서는 X-Ray 영상에서 발 뼈의 골절 영역을 분석 및 진단하기 위한 전단계로서 X-Ray 영상에서 뼈와 피부 영역을 분할하는 방법을 제안한다. 제안된 방법은 X-Ray 영상의 피부 영역과 발 뼈 영역을 분할하기 위해 가우시안 필터를 적용하여 DOG 영상을 생성한다. 그러나 기존의 가우시안 필터는 정적으로 적용되기 때문에 영상을 촬영하는 부위와 각도에 따라 영상의 특성이 달라지는 X-Ray 영상에 적용하기에 부적합하다. 따라서 부위와 각도에 따라 영상의 특성 변화에 민감하지 않는 동적 가우시안 필터를 제안한다. 실험 결과에서는 제안하는 동적 가우시안 필터와 기존의 정적인 가우시안 필터를 각각 적용하여 생성된 DOG 영상에 대해서 발 뼈 영역과 피부 영역을 분할하고, 효율성을 TPR과 특이도로 분석한 결과, 제안된 동적 가우시안 필터를 적용한 방법이 정적 가우시안 필터보다 평균적으로 TPR는 0.12%와 특이도는 평균적으로 0.36%가 개선된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.