• Title/Summary/Keyword: 특이점 회피

Search Result 14, Processing Time 0.025 seconds

Design Criteria and Cluster Configuration Improvement of Single Gimbal Control Moment Gyros for Satellite (인공위성을 위한 제어모멘트자이로의 설계시 고려요소 및 배치형상 개선방안)

  • Seo, Hyun-Ho;Rhee, Seung-Wu;Lee, Seon-Ho;Oh, Shi-Hwan;Yim, Jo-Ryeong;Yong, Ki-Lyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.48-56
    • /
    • 2008
  • Nowadays, CMG(Control Moment Gyros) becomes one of the essential actuators for satellite attitude control. The method to define the key requirements of CMG is suggested to avoid CMG's singularity problem for the limited envelope of angular momentum of 2H. Furthermore, the analysis and simulation are carried out to provide a necessary guideline when three CMGs are used for spacecraft control purpose. An improved configuration of redundant four CMG cluster, slightly different from the conventional configuration, is proposed not only to avoid the CMG singularity problem, but to improve agility about roll or pitch-axis.

Suitability of Singularity Indices for Steering Law Design of Control Moment Gyros (제어모멘트자이로의 구동법칙 설계를 위한 특이성 지수의 적합성)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1020-1027
    • /
    • 2014
  • Singularity indices for steering law design of CMGs have been analyzed. Several qualitative criteria to evaluate the suitability of indices have been suggested. Fast calculation and consistency with the condition number of the input matrix are the most important ones. Based on these criteria, modified indices have been proposed. Properties of infinite value and finite value indices have been compared and an ad hoc method to combine those properties has been presented. Computer simulation results are given to verify the proposed method.

A New Method far Singularity Avoidance of 6 DOF Articulated Robot Manipulators using Speed Limiting algorithm (최대속도제한 알고리즘을 이용한 6축 수직다관절 로봇의 새로운 특이점 회피방법 개발)

  • 최은재;정원지;홍대선;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.454-457
    • /
    • 2002
  • This paper presents a new motion control for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. The proposed method was verified using MATLAB-based simulations.

  • PDF

Robust Trajectory Planner for Obstacle and Singularity Avoisnce in a Robot Manipulator (장애물과 특이점의 회피를 위한 강인한 로봇의 궤적계획)

  • Leem, N. I.;Ahn, D. S.;Son, K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.593-597
    • /
    • 1993
  • This paper introduces robust trajectory planner for obstacle and singularity avoidance in a nonresonant robot manipulator. In this work, we propose new trajectory generator in cartesian space by use of Bezier function. Also, SR-inverse is used for obstacle and singularity avoidance of nonredundant robot. This result is verified with 3-D simulator which has been developed to examine the effectiveness of the suggested method.

  • PDF

Geometric Singularity Avoidance of a 3-SPS/S Parallel Mechanism with Redundancy using Conformal Geometric Algebra (여유자유도를 가진 3-SPS/S 병렬 메커니즘의 등각 기하대수를 이용한 기하학적 특이점 회피)

  • Kim, Je Seok;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-261
    • /
    • 2015
  • A parallel mechanism with redundancy can be regarded as a means for not only maximizing the benefits of parallel mechanisms but also overcoming their drawbacks. We proposed a novel parallel mechanism by eliminating an unnecessary degree of freedom of the configuration space. Because of redundancy, however, the solution for the inverse kinematics of the developed parallel mechanism is infinite. Therefore, we defined a cost function that can minimize the movement time to the target orientation and found the solution for the inverse kinematics by using a numerical method. In addition, we proposed a method for determining the boundary of the geometric singularity in order to avoid singularities.

Design Scheme for a 6-DOF Parallel Haptic Device and Comparative Study on the Singularity-Free Algorithms (6자유도 병렬형 햅틱장치의 설계와 특이점 회피 알고리즘의 비교연구)

  • 김형욱;이재훈;이병주;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1041-1047
    • /
    • 2002
  • It is known that parallel-type mechanisms have many singularities than serial-type mechanisms. In haptic application, these singularities deteriorate the system performance when the haptic system displays the reflecting force. Moreover, different from general manipulators, haptic systems can't avoid the singular point because they are operated by user's random motion command. Although many singularity-free algorithms for serial mechanisms have been proposed and studied. singularity-free algorithms for parallel haptic application have not been deeply discussed. In this paper, various singularity-free algorithms, which are appropriate to parallel haptic system, will be discussedand evaluated.

Characterization of Singularity Avoidance Measures for a Redundant Robot (여유자유도 로봇을 위한 특이점 회피 성능지수들의 특성화)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.42-51
    • /
    • 1992
  • This paper suggests a measure constraint locus which is the loci of points satisfying the necessary constraint for optimality of a measure in the configuration space. The characterization of four measures for singularity avoidance is worked out by using the measure constraint locus. It gives a global look at the performance of an inverse kinematic algorithm whien each of measures in a kinematically redundant robot is used. The invertible workspace without singularities and the topological properties both on the configuration and operational spaces are analyzed. We discuss also some limitations, based on the topological arguments of measure constraint locus, of the inverse kinematic algorithms, and compare global properties of each of measure. Therfore, a new concept called measure constraint locus gives a methodology for obtaining a conservative joint trajectory without singularities for almost entire workspace.

  • PDF

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

Development of CMG Ground Simulator using Torque Sensor (토크센서를 이용한 CMG의 지상 시뮬레이터 개발)

  • Kim, Seung-Hyeon;Lee, Seung-Mok;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • CMG cluster which consists of four CMGs can be used to produce 3-axis torque. There are many issues that we have to investigate and validate when CMG cluster itself is developed. Thus, its ground validation and verification processes are essential. Therefore, CMG simulator which uses a torque sensor to calculate satellite attitude is proposed in this paper. Update and kalman filter are also proposed for gimbal angle problem occurred in development. The first way uses a calculated gimbal angle as a primary and a sensor angle as a scondary to reduce error. Also, the test results of specific CMG steering law as well as attitude control logic are presented as an example.

Adaptive Tracking Control for Spacecraft Rendezvous and Docking (우주비행체의 랑데부 및 도킹을 위한 적응 제어기법)

  • Yoon, Hyung-Joo;Shin, Hyo-Sang;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1072-1078
    • /
    • 2008
  • An adaptive control algorithm for spacecraft rendezvous and docking in a Keplerian orbit is presented. The equations of relative motion of two spacecrafts expressed in a local-vertical-local-horizontal rectangular frame are converted to a general Hamiltonian form, then an adaptive control method developed for the uncertain Hamiltonian system is applied to the rendezvous and docking problem. A smooth projection algorithm is applied to keep the parameter estimates inside a singularity-free region, and a numerical example shows that the developed controller successfully deals with the unknown mass of the chaser spacecraft.