• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.026 seconds

A Rule Generation Technique Utilizing a Parallel Expansion Method (병렬확장을 활용한 규칙생성 기법)

  • Lee, Kee-Cheol;Kim, Jin-Bong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.942-950
    • /
    • 1998
  • Extraction of knowledge, especially in the form of rules, from raw data is very important in data mining, the aim of which is to help users who feel the lack of knowledge in spite of the abundance of data. Logic minimization tools are ones which derive optimized knowledge given ON set and DC set. First, the parallel expansion scheme of logic minimization is extracted and used to obtain intial knowledge to get final rules, which are successfully applicable to real world data. The prototype system based on this new approach has been experimented with real world data to show that it is as practical as conventional long studied decision tree methods like C4.5 system.

  • PDF

Short-term demand forecasting Using Data Mining Method (데이터마이닝을 이용한 단기부하예측)

  • Choi, Sang-Yule;Kim, Hyoung-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.126-133
    • /
    • 2007
  • This paper proposes information technology based data mining to forecast short term power demand. A time-series analyses have been applied to power demand forecasting, but this method needs not only heavy computational calculation but also large amount of coefficient data. Therefore, it is hard to analyze data in fast way. To overcome time consuming process, the author take advantage of universally easily available information technology based data-mining technique to analyze patterns of days and special days(holidays, etc.). This technique consists of two steps, one is constructing decision tree, the other is estimating and forecasting power flow using decision tree analysis. To validate the efficiency, the author compares the estimated demand with real demand from the Korea Power Exchange.

Efficient Algorithms for Mining Association Rules Under the Interactive Environments (대화형 환경에서 효율적인 연관 규칙 알고리즘)

  • Lee, Jae-Moon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.339-346
    • /
    • 2001
  • A problem for mining association rules under the interactive environments is to mine repeatedly association rules with the different minimum support. This problem includes all subproblems except on the facts that mine repeatedly association rules with the s믇 database. This paper proposed the efficient algorithms to improve the performance by using the information of the candidate large itemsets which calculate the previous association rules. The proposed algorithms were compared with the conventional algorithm with respect to the execution time. The comparisons show that the proposed algorithms achieve 10∼30% more gain than the conventional algorithm.

  • PDF

A performance improvement methodology of web document clustering using FDC-TCT (FDC-TCT를 이용한 웹 문서 클러스터링 성능 개선 기법)

  • Ko, Suc-Bum;Youn, Sung-Dae
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.637-646
    • /
    • 2005
  • There are various problems while applying classification or clustering algorithm in that document classification which requires post processing or classification after getting as a web search result due to my keyword. Among those, two problems are severe. The first problem is the need to categorize the document with the help of the expert. And, the second problem is the long processing time the document classification takes. Therefore we propose a new method of web document clustering which can dramatically decrease the number of times to calculate a document similarity using the Transitive Closure Tree(TCT) and which is able to speed up the processing without loosing the precision. We also compare the effectivity of the proposed method with those existing algorithms and present the experimental results.

A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing (효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구)

  • Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.257-264
    • /
    • 2014
  • This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).

An Efficient Algorithm For Mining Association Rules In Main Memory Systems (대용량 주기억장치 시스템에서 효율적인 연관 규칙 탐사 알고리즘)

  • Lee, Jae-Mun
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.579-586
    • /
    • 2002
  • This paper propose an efficient algorithm for mining association rules in the large main memory systems. To do this, the paper attempts firstly to extend the conventional algorithms such as DHP and Partition in order to be compatible to the large main memory systems and proposes secondly an algorithm to improve Partition algorithm by applying the techniques of the hash table and the bit map. The proposed algorithm is compared to the extended DHP within the experimental environments and the results show up to 65% performance improvement in comparison to the expanded DHP.

Efficient k-Nearest Neighbor Join Query Processing Algorithm using MapReduce (맵리듀스를 이용한 효율적인 k-NN 조인 질의처리 알고리즘)

  • Yun, Deulnyeok;Jang, Miyoung;Chang, Jaewoo
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.767-770
    • /
    • 2014
  • 대용량 데이터를 분석하기 위한 맵리듀스 기반 k-NN 조인 질의처리 알고리즘은 최근 데이터 마이닝 및 분석을 기반으로 하는 응용 분야에서 매우 중요하게 활용되고 있다. 그러나, 대표적인 연구인 보로노이 기반 k-NN 조인 질의처리 알고리즘은 보로노이 인덱스 구축 비용이 매우 크기 때문에 대용량 데이터에 적합하지 못하다. 아울러 보로노이 셀 정보를 저장하기 위해 사용하는 R-트리는 맵리듀스 환경의 분산 병렬 처리에 적합하지 않다. 따라서 본 논문에서는 새로운 그리드 인덱스 기반의 k-NN 조인 질의 처리 알고리즘을 제안한다. 첫째, 높은 인덱스 구축 비용 문제를 해결하기 위해, 데이터 분포를 고려한 동적 그리드 인덱스 생성 기법을 제안한다. 둘째, 맵리듀스 환경에서 효율적으로 k-NN 조인 질의를 수행하기 위해, 인접셀 정보를 시그니처로 활용하는 후보영역 탐색 및 필터링 알고리즘을 제안한다. 마지막으로 성능 평가를 통해 제안하는 기법이 질의 처리 시간 측면에서 기존 기법에 비해 최대 3배 높은 질의 처리 성능을 나타냄을 보인다.

Memory Improvement Method for Extraction of Frequent Patterns in DataBase (데이터베이스에서 빈발패턴의 추출을 위한 메모리 향상기법)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Since frequent item extraction so far requires searching for patterns and traversal for the FP-Tree, it is more likely to store the mining data in a tree and thus CPU time is required for its searching. In order to overcome these drawbacks, in this paper, we provide each item with its location identification of transaction data without relying on conditional FP-Tree and convert transaction data into 2-dimensional position information look-up table, resulting in the facilitation of time and spatial accessibility. We propose an algorithm that considers the mapping scheme between the location of items and items that guarantees the linear time complexity. Experimental results show that the proposed method can reduce many execution time and memory usage based on the data set obtained from the FIMI repository website.

Detection of Protein Subcellular Localization based on Syntactic Dependency Paths (구문 의존 경로에 기반한 단백질의 세포 내 위치 인식)

  • Kim, Mi-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.375-382
    • /
    • 2008
  • A protein's subcellular localization is considered an essential part of the description of its associated biomolecular phenomena. As the volume of biomolecular reports has increased, there has been a great deal of research on text mining to detect protein subcellular localization information in documents. It has been argued that linguistic information, especially syntactic information, is useful for identifying the subcellular localizations of proteins of interest. However, previous systems for detecting protein subcellular localization information used only shallow syntactic parsers, and showed poor performance. Thus, there remains a need to use a full syntactic parser and to apply deep linguistic knowledge to the analysis of text for protein subcellular localization information. In addition, we have attempted to use semantic information from the WordNet thesaurus. To improve performance in detecting protein subcellular localization information, this paper proposes a three-step method based on a full syntactic dependency parser and WordNet thesaurus. In the first step, we constructed syntactic dependency paths from each protein to its location candidate, and then converted the syntactic dependency paths into dependency trees. In the second step, we retrieved root information of the syntactic dependency trees. In the final step, we extracted syn-semantic patterns of protein subtrees and location subtrees. From the root and subtree nodes, we extracted syntactic category and syntactic direction as syntactic information, and synset offset of the WordNet thesaurus as semantic information. According to the root information and syn-semantic patterns of subtrees from the training data, we extracted (protein, localization) pairs from the test sentences. Even with no biomolecular knowledge, our method showed reasonable performance in experimental results using Medline abstract data. Our proposed method gave an F-measure of 74.53% for training data and 58.90% for test data, significantly outperforming previous methods, by 12-25%.

KISS Korea Computer Congress 2007 (이동 객체의 패턴 탐사를 위한 시공간 데이터 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.153-158
    • /
    • 2007
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는

  • PDF