• Title/Summary/Keyword: 투입반응함수

Search Result 15, Processing Time 0.025 seconds

The Health Effects of PM2.5: Evidence from Korea (대기오염의 건강위해성 연구 - PM2.5를 중심으로 -)

  • Hong, Jong-Ho;Ko, Yookyung
    • Environmental and Resource Economics Review
    • /
    • v.12 no.3
    • /
    • pp.469-485
    • /
    • 2003
  • This paper reports on the results of epidemiological investigation of daily health effects in the elderly associated with daily exposure to particulate matters in Korea. Our main focus is on the potential difference in health effects between PM10 and PM2.5. While the Korean environmental authority has set an ambient standard for PM10, the government currently does not monitor PM2.5, which has no national standard. A daily data on respiratory symptoms as well as PM concentrations are collected for a total of 120 days. Using a probit model, we find statistically significant negative health effects of PM2.5 on respiratory symptoms among the nonsmoking elderly, while PM10 does not show such effects from the estimation. This result suggests that, for air quality regulatory purposes, PM2.5 can be a more appropriate air pollutant than PM10.

  • PDF

Measurement of Energy Efficiency For the Reduction of Greenhouse Gases (온실가스 감축에 대비한 에너지 효율의 계측)

  • Kang, Sang-Mok
    • Journal of Environmental Policy
    • /
    • v.11 no.1
    • /
    • pp.75-97
    • /
    • 2012
  • The purpose of the paper is to estimate the functions of the energy input efficiency and the energy intensity efficiency, and measure their energy efficiencies for the reduction of greenhouse gases focusing on OECD countries. The efficiency of the traditional energy intensity was rarely connected with the energy efficiencies of the stochastic frontier function. It seems that the energy efficiency by the function of energy input efficiency sensitively responds to the order of GDP, capital stock, labor, and energy input quantity as explanatory variables. In the future, we need to reduce energy quantities by the optimal mix of inputs, and pursuit low-carbon economic growth through the production of the goods consuming small energy.

  • PDF

Investigation on Vanishing Possibility of Food waste Using Fermentation soil (발효토에 의한 음식물쓰레기 소멸화 가능성의 검토)

  • Phae, Chae-gun;Joo, Hung-soo;Park, Jung-soo;Choi, Heon-su;Jang, Ki-hun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2000
  • This study was performed to determine the best fermentation soil in vanishing composting of individual residence garbage. At the result, temperature, weight, water content, volatile solid were reduced gradually by reaction of microorganism in the reactors after food was inserted for 9 days. The vanishing possibility was observed in all reactors. The best reactor was F and 4 that seeded microorganisms which were provided at S University. In addition it was possible to shorten cycle of putting in food waste. Inactivated reactors will be bad because of increased water content for long reaction time. Sodium chloride was accumulated and not vanished as time passed. But reactor was not insulated, the activities of microorganism in the reactor were affected highly by cold weather(about less than $12^{\circ}C$). When the study was extended to find out the feasibility of application, the retention time could be shortened to 3days form 9 days, when the microorganism reactor that used the fermentation soil seeded microorganisms which were provided at S University was maintained about $20^{\circ}C$.

  • PDF

A study on degaradation stabilization of organic material through aerobic treatment before landfill of domestic waste (생활폐기물의 호기성처리를 통한 유기물 분해안정화에 관한 연구)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.79-89
    • /
    • 2003
  • The purpose of this study is to investigate appropriate environmental factors when domestic waste is decomposed as aerobic digestion. So stabilization degree was measured after the waste is mixed as certain rates and water content was controlled by 55% and 60%. Variation of VS showed food waste in reactors of number 1, 2, 3, 4 and 5 was decomposed fully except reactor of number 6. Decomposition degree of VS in reactors of number 1, 2, 3 and 4 was not different high because Vinyl and plastic inserted played role bulking agent in reactor number 1, 2, 3 and 4. In reactors, maximum temperature indicated $57{\sim}59^{\circ}C$ and temperatures in reactors 1, 2, 3 and 4 were higher and remained longer than in reactor 5 and 6 for 2~4 days. Variation of $CO_2$ was similar to that of VS. The reduction rate of water content was low because moisture generated by oxidation fever of microorganism did not evaporated well. pH was low in the beginning of the reaction however, as time passed, it increased slightly and remained regular pattern. EC and C/N showed the same pattern as pH. Settlement and weight reduction rates were similar to the factors above. Reactor 1, 2, 3, and 4 showed higher settlement and weight reduction rate than reactor 5 and 6.

  • PDF

Reduction of Dehydrated Cake by the Optimization of Flocculation Factors and the Single Flocculant/Dual Flocculation System (응집인자 최적화 및 다단응집 시스템을 이용한 탈수 케이크 감량)

  • Kim, Hyung-Jun;Bae, Young-Han;Lee, Sang-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2008
  • The flocculation characteristics of polyacrylamide base flocculants were estimated to reduce the moisture content of the dehydrated cakes. The dewaterability for sewage sludge was found to have a marked effect depending on the flocculant type, agitating speed and time, kind of dissolution water, etc. The optimal agitating speed and time were 700 rpm and 3 sec, respectively, in this experimental condition. and the dewaterability was proportion to the agitating speed upto 700rpm. When recycle water as the dissolution water was used, the solution viscosity of all kind of flocculants was decreased. However, the change of its viscosity are not proportioned to the dewaterabilities for each flocculant. Flocculation system of combinations of the first and sencond flocculation using single flocculant was investigated. Effects of the ratio of first and second dosage for dual flocculation on the dewaterability were also investigated. The optimum conditions of dual flocculation system are 75% and 50% as first dosages for low and high viscous flocculant for total dosage of common flocculation, respectively. Based on the results, an overall mechanism of dual flocculation system is proposed and it is envisaged that optimization of flocculation processes in this way can result in considerable savings in cost.

Reduction of Salt Concentration in Food Waste by Salt Reduction Process with a Rotary Reactor (로터리식 저염화 공정설비에 의한 음식물 쓰레기의 염분농도 저감)

  • Kim, Wi-sung;Seo, Young-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • In order to reduce salt(as NaCl) contents in food waste and to improve the quality of discharged wastewater produced during the recycling process of food waste for the purpose of compost and feed stuff, a salt reduction process by added water into food waste was developed. The pilot plant with a rotary type salt reduction equipment to manage continuously 0.5 ton food waste per hour was constructed and the efficiency was tested. The amount of added water was calculated by the water content and the efficiency of dewatering process of food waste. Approximately 0.8 liter water per a kilogram of food waste was injected into the reactor in which food waste was pouring simultaneously, then diluted/mixed in a rotary reactor. About 1.1 liter of leachate including added water was generated, but the leachate contained a very high content of organic particles, so most particles were recovered by two step solid-liquid separation process. The first step was a gravitational filtering process using screens with a pore diameter of 1mm, and the second separation process was centrifugal process. Organic quality of food waste which had been desalted was maintained by inputting the entirely recovered organic particles. The efficiency of salt reduction of food waste was estimated by measuring a chloride anion by titration and salinity by a probe. The results by the two different measuring methods were always over 50%, and the quality of final wastewater was improved up to $200mg/{\ell}$ as TS(total solid) by an additional settling process after the two step solid-liquid separation process.

  • PDF

Experimental Evaluation and Resident's Assessment of Zero Food Waste System in Multi-family Housing Estates (공동주택단지의 음식물쓰레기 제로하우스 시스템 실용화를 위한 현장 시험운영 및 거주자 평가)

  • Oh, Jeongik;Lee, Hyunjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.674-681
    • /
    • 2015
  • This research conducts both experimental evaluation and resident's assessment of zero food waste system (ZFWS) in multifamily housing estates in order to explore the feasibility of ZFWS embedded in fermentation and extinction technology utilizing wood chips turned into fertilizer. Having been established in a multifamily housing estate, ZEFWS was proved to be functional and effective. During the 3-month experimental period, the weight between infused food waste and its reactor was reduced significantly enough, and the chemical analysis showed that the concentration of organic compounds went from 87.9% to 75.8%, $H_2O$ decreased from 69.7% to 45.5%, NaCl rose from 0.2% to 0.5%, pH increased from 4.6 to 7.8, and ATP escalated from 505.3 nmol/L to 723.5 nmol/L. Also, the chemical analysis of the output in the experimentation indicated adequacy of the organic fertilizer. In the self-administered questionnaire survey for residents participating in the field project, almost all the respondents viewed that ZFWS can compete with conventional food waste disposal methods and an idealistic way to upcycling food waste into fertilizer.

Effect on Livestock Manure Composting by the Enriched Microbial Population (미생물에 의한 축산 폐기물 퇴비화에 미치는 영향)

  • 신혜자
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.129-135
    • /
    • 2002
  • Several kinds of thermophilic, aerobic microorganisms (Bacillus genus), metal leaching microorganisms (Thiobacillus, T. ferooxidans), and other nondegradable chemical-degrading microorganisms (Pseudomonas genus) were utilized to study the effect on composting livestock manure. Under the Carbon-Nitrogen ratio (C/N) of 35∼40 and water content of 50∼65% conditions, the composting in the cycling drum reactor showed slower composting and lower temperature increase than that of the manual reactor. Element analysis after composting indicated relatively high levels of mineral contents with the substitutional effect of chemical fertilizer. Metal analysis before and after composting showed lower As in all, Cr in pig, Pb in cow, Hg in chicken, and Cu in cow manure compost than the regulation values. Compost maturity was ascertained by the several maturity tests. Salmonella and E. cozi detection test by SS or EMB agar plate confirmed the safety from the pathogenic microorganisms. The results suggest that the inoculation of metal and some other chemical degrading microorganisms during composting might decrease metal contamination and increase composting rate.

Improvement of Nitrification Efficiency by Activated Nitrifying Bacteria Injection at Low Temperature (활성화된 질산화균 주입에 의한 저온 질산화효율 향상)

  • Lim, Dongil;Kim, Younghee
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.473-483
    • /
    • 2018
  • In this study, we have developed a lab scale bioreactor to identify the characteristics of nitrification reaction according to operation condition (temperature, inhibitor (as Cl), activated nitrifying bacteria (ANB). etc) to improve nitrification efficiency at low temperature. Recovery rate of nitrification took about 4 days to reach the normal level by injected ANB after inhibition shock of CI injection at $20^{\circ}C$, when measured the concentration of $NO_2{^-}-N+NO_3{^-}-N$ in the effluent. In the case of $10^{\circ}C$, recovery of nitrification rate took about 4 days to reach the level of half to the normal level and 7 days for complete recovery which took 3 days more than those at $20^{\circ}C$. At $10^{\circ}C$ considering the winter season, the specific nitrification rate(SNR) of the from 1 day to 6 days after injected ANB according to its operation condition increased from 0.029 to 0.767 mgN/gSS/hr. The simulated SNR for the 8th day after the injected ANB at $10^{\circ}C$ was 0.840, 3.625 mgN/gSS/hr, respectively as linear function and exponential function, expecting to exceed level of 2.592 mgN/gSS/hr at normal condition. It was confirmed that injection of ANB during low temperature operation has many effects for improving nitrification efficiency through this study. In future studies, if further studies are carried out the determination of ANB injection and the design of efficient ANB reactor considering the changes of operating characteristics by site, it will contribute to the improvement of nitrification efficiency in winter season.

Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性))

  • Kim, Hwan Gi;Park, Ro Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1990
  • In this paper, the experimental study was carried out for the removal of olive oil in wastewater by the use of Biological Fluidized Bed(BFB) with the reticulated polypropylene sheets as media. The nonbiodegradable olive oil, one of the animal and vegitable oil, was used bacause of the relative simplicity of constitution. Biological degraciability and removal characteristics of emulsified olive oil were studied by batch and continuous experiments respectively. From the results of batch experiments, it was observed that the emulsified olive oli used in BFB reactor was absorbed by media and sludge in about 12 hours, and degradation of the absorbed olive oli was mostly completed for 24 hours. The functional relationship of Michaelis-Menten's Enzyme reaction equation exists between oil concentration and maximum specific rate of olive oil. From the continuous experiments for the removal of olive oil using BFB reactor, it was proved that the substrate removal rate coefficient $k=0.004d^{-1}$, which is the first order kinetics. It was apperared that oxygen utlization coefficients for synthesis(a') and endogeneous respiration(b') of microorganisms in the reactor are respectively 0.85mg $O_2/mg$ $COD_{cr}$ and 0.011mg $O_2/mg$ BVS. day.

  • PDF