• 제목/요약/키워드: 퇴적층

Search Result 1,130, Processing Time 0.314 seconds

A Luminescence Dating for a Relict Dune from the Sindu Dunefield (신두리 지역의 고사구(古砂丘)에 대한 OSL 연대 측정)

  • Seo, Jong-Cheol
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 2005
  • To find out the buried age of the relict dune sediments, a luminescence dating bas conducted for a relict dune from the Sindu dunefield on the Taean Peninsula. It shows that the deposition of the dune sands at 3m depth began about 690$\sim$730 years ago. From 3m to l.5m depth, the lower part of the dune bas remained stable, but a relict dune deposit appear at 1.3m depth. This part yields an age of about 68 years. The two samples that were collected from the lower part of the dune at depths of the 1.5 m and 3.0 m below the surface show a net accumulation rate of around 0.75 cm/y which is relatively slow for a coastal dune. The chronology obtained in this study demonstrates that a significant amount of sediments has been replaced or remobilized in the area over the past 1000 years, and there was at least a soil formation process during the same time period. These suggest that a new approach is necessary to identify the formation age of the so-called paleo-dune at the Sind dunefield.

  • PDF

Submarine Layer Structure By Seismic Reflection Survey Between Geoje Island And Namhae Island (탄성파 탐사로 본 거제도 남해도간의 해저지층 구조)

  • Song, Moo-Young;Jo, Kyu Chang
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • A seismic reflection Survey was carried out in the offshere area between Geoje Island and Namhae Island, utilizing the echosounder with the frequency 28KHz and thd Uniboom with the filter band 800∼2000Hz. The results show the submarine topography, sedimentary layer structure and the depth distribution of the base rock. The water depth of the sea in the survey area is less than 80m; up to 40m contour line the sea bottom surface has a slight dip(about 1/1000), while in the zone deeper than 40m the bottom topography has a irregular relief. The thickness of the whole sedimentary deposit is about 20∼70m and divided into 3 layers: Upper layer(A layer) with horizontal laminae, intermediate layer(B layer) with cross-bedding and groove structure, and lower layer(C layer) not showing any sedimentary structure on the seismic reflection profile. The surface of the base rock is deeper gradually in the south-eastern part of the survey area and extends to 140m depth. The vertical sediments sequences, composed of B layer and A layer, show the type of transgressive sequences. It is interpreted that B layer was formed at one period when the sea level was lower 40∼60 than the present and ince then, following the rising of the sea level, A layer was deposited.

  • PDF

Characteristics of the bottom sediments from the continental shelf of the Korea Strait and some geochemical aspects of the shelf fine-grained sediments (한국 대한해협 대륙붕 표층 퇴적물의 특성과 세립퇴적물의 지구화학적 특성)

  • 박용안;김경렬
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 1987
  • A study on sedimentation, geochemical behavior and seismic stratigrapht of the continental shelf sediments along the Korea Strait and a part of south and southeast offshore area of the Korea Peninsula was carried out. In the inner shelf floor with depth ranging up to 80m zonal distribution patterns of mud, sandy silt, and silty sand were observed. In the outer shelf, however, coarse sandy sediments are dominant, and shills and gravels were frequently observed. These observations seem to confirm the Holocene sedimentary processes on the continental shelves off the south, south to east coasts of Korea discussed by Park (1985 and 1986) and Park and Choi (1986). The suface sediments (upper most 5cm thick)from selected 9 stations were analyzed for Al,Mn, Fe,Cr,Ni,Cu,Zn and Pb in order to study geochemical behavior of the sediments in the study area. All data were normalized to Al to com,pensate the size effect of the sediments.In general,inner shelf sediments show slight enrichment compared to the outer shelf sediments.In particular,Pb and Zn show heavy enrichment in most of the sediments.to degrees comparable to those observed at the polluted Kwangyang and Masan Bay sediments.Thus,it is considered that rapid migration or movement of fine-grained sediments in the study area does exist. Three seismic stratigraphic units were analyzed based on the seismic records.The acoustic basement the lower sedimentary deposit(B)and the upper deposit(A)were observed.The strong reflectivity R,in particular, between unit A and B is considered to be an erosinal unconformity during the last Glacial time.

  • PDF

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.

Weathering Properties in Deposits of Fluvial Terrace at Bukhan River, Central Korea (북한강 하안단구 퇴적층의 풍화 특성)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.425-443
    • /
    • 2004
  • Fluvial terraces is poorly developed along Bukhan River in Central Korea. Altitude from riverbed of T1 terraces are 18-29m, T2 terraces 2539m, respectively. Rubification index of T2 is 0.66, T1 is 0.54, and thickness of gravel weathering rind on gneiss of T2 are 14.0mm, granites of T2 are $\infty$, gneiss of T1 are 5.0mm and granites of T2 are 8.0mm, because weathering in deposits of T2 terraces, older than T1, is severer than T1 terraces. Since deposits in T2 have more active and longer weathering than T1, SiO$_2$/Al$_2$O$_3$ is 3.32 in T2 and 4.06 in T1, and SiO$_2$/R$_2$O$_3$ is 2.64 in T2 and 3.19 in T1. CIA(Chemical Index of Alteration) is 87.85% in T2 and 85.88% in T1. Kaolinite and halloysite are founded in deposits of T2 indicating high weathering, and are founded gibbsite made tv eluviation of kaolinite. However, deposits of T1 have no kaolinite, and are found plagioclase, weak mineral in weathering process. Comparing to previous researches by estimated age as altitude from riverbed, rubification index, thickness of gravel weathering rind, element contents and mineral composition, forming age of T2 terraces in Bukhan River are estimated in marine oxygen isotope stage 6 (130-190ka), and T1 terraces are marine oxygen isotope stage 4(59-74ka).

Late Quaternary Stratigraphy and Unconformity of the Banweol Tidal-Flat Deposits(upper tidal flat) and Unconformity, Kyunggi Bay, West Coast of Korea (한국 서해 경기만 반월 조간대(상부조간대) 퇴적층의 제4기 후기 층서와 부정합)

  • 박용안;임동일;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2000
  • The late Quaternary stratigraphy and basal unconformity (nonconformity) of the intertidal deposits (upper tidal flat) in the Banweol tidal basin in the Kyunggi Bay, west coast of Korea has been investigated and established. The Unit I (middle to late Holocene upper intertidal deposit) and Unit II (pre-Holocene fluvial to alluvial deposit) in descending order are classified and interpreted. The basement rocks of the Banweol tidal basin is dominantly preCambrian metamorphic rocks on which Unit II is overlying unconformably. In short, the late Quaternary stratigraphy and unconformity of the Banweol tidal flat deposits are established and interpreted in terms of sedimentology and sea-level fluctuation history during late Quaternary.

  • PDF

A Study of the Holocene Climate Change Using Humus Analysis of the Nam River Basin in Jinju, Southern Part of Korea (휴무스분석을 통한 진주 남강유역의 홀로세 기후 변화 연구)

  • Jung, Heakyung;Kim, Cheong Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.510-518
    • /
    • 2012
  • The Holocene climate change has been studied based on humus analysis of sediments that came from the Nam River basin in the Jinju, Gyeongnam. Humus and soil organic carbon analyses were performed to interpret the climate change and OSL dating and radiocarbon dating were conducted to determine the age of the sediments. The age determinations revealed that the sediments were formed approximately from $10,000{\pm}100$ yr. BP to $4,370{\pm}50$ yr. BP (2,970 BC) The deposits were classified into five layers based on sediments color and texture, and the climate change of each layer has been interpreted. The general climate was found out to be warm. The study result illustrated that section I was the lowest layer and section V the highest among the five surveyed sections. One the other hand, relatively cold events were detected in the sections ranging from I and II to III in terms of temperature. In term of humidity, sections II and III are estimated to have been relatively dry. Sections IV and V were relatively warm and dry, and the section IV tends to be warmest of the entire sedimentary. In addition, there is a tendency that the total soil organic carbon shows relatively high values under the cooler and humid climatic condition.

Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea (서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화)

  • Na, Jung-Yul;Yu, Sung-Hyup;Seo, Jang-Won
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Vertical temperature distributions in muddy intertidal sediments near the Jebu Island on the west coast of Korea were obtained during the period of ebb tide which occurred in day time. The observations of mud temperature were made with thermistor embedded probe at 2cm interval for 18cm-layer of sediment for five different months of the year. Temporal changes in the vertical profile of the sediment temperature are strongly depend on the air temperature, the previous time of flood tide and the time of ebb tide. Heat exchanges in the surface layer (0-2 cm) in terms of magnitude and direction are greater than and opposite to those in the deeper sediment layer (8-12 cm), respectively and do not show any significant seasonal variations. In general, the surface layer gains heat while the deeper layer loses the heat. By using the 1-D diffusion equation temporal vertical profiles of the sediment temperature were obtained and were compared with the observed ones. The results show that in the sediment layer below 4 cm-depth the heat transport is predominantly by molecular diffusion. The average magnitude of heat flux into the sediment layer (0-18 cm) during the ebb tide when the mudflats were exposed in the middle of the day were between 4.1 and $28.9\;W/m^2$.

  • PDF

Seasonal Accumulation Pattern and Preservation Potential of Tidal-flat Sediments: Gomso Bay, West Coast of Korea (조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만)

  • Chang, Jin-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • Seasonal changes of topography, sediment grain size and accumulation rate in the Gomso-Bay tidal flat, west coast of Korea, have been studied in order to understand the seasonal accumulation pattern and preservation potential of the tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheniers accelerates during the winter and typhoon periods, but it almost stops in summer when mud deposition is instead predominant at the middle and upper tidal flats. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods. Measurements of accumulation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface. The upper tidal flat where the accumulation rate of summer was generally higher than that of winter was characterized by a continuous deposition throughout the entire year, whereas in the middle tidal flat, sediment accumulations were concentrated in winter relative to summer and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Can cores taken across the tidal flat reveal that sand-mud interlayers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore. Based on above results, it is suggested that the storm deposits by winter storms and typhoons would consist of the major part of the Gomso-Bay sediments.

  • PDF

Interpretation of Sedimentary Structure and Depositional Environment Based on a High-Resolution Seismic Profile across the Northeastern Boundary of the Pungam Basin (고해상도 탄성파자료를 이용한 풍암분지 북동부의 퇴적구조 및 퇴적환경 연구)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.

  • PDF