• Title/Summary/Keyword: 퇴적우세

Search Result 291, Processing Time 0.022 seconds

An Experimental Study on Depositional Environments and Consolidation Properties of Shihwa Deposits (시화지역 퇴적층의 퇴적환경과 압밀특성에 관한 연구)

  • 원정윤;장병욱;김동범;손영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.49-58
    • /
    • 2004
  • Consolidation properties of Shihwa deposits were analysed by means of depositional environments. Depositional environments including particle size distributions, sediment structures, geochemical properties, porewater chemistries and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests (CKoUC) for undisturbed samples were performed to examine the overconsolidation phenomena. Based on the results of analysis of depositional environments, it was found that the upper silt/clay mixed layer was deposited under marine condition while underlying sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had occurred in marine deposits, overconsolidation ratios of the upper marine samples were greater than unity Stress Paths of the upper marine samples behaved similarly to those of normally consolidated clays. Data plotted in stress state charts showed that the marine deposits were normally consolidated in geological meaning. These apparent overconsolidation of the marine deposits can be explained by the structures i.e. chemical bonding due to the difference of the rate of deposition, not by geological erosions and ground water fluctuations.

Geochemistry of Shallow gases taken from the core sediments in the southeastern Ulleung Basin (울릉분지 남동부 시추 퇴적물 내에 함유되어 있는 천부가스의 특성)

  • Lee Young joo;Huh Shik;Kwak Young hoon;Kim Hag ju;Chun Jong Hwa;Jun Sang Joon;Yoo Hai Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.35-40
    • /
    • 1999
  • Chemical and isotopic compositions of hydrocarbon gases were analyBed to characterize the properties of the shallow gases distributed in the southeastern part of the Ulleung Basin, offshore Korea. Sediments from the core were also analyzed to determine the characteristics and relationship to shallow gases. Hydrocarbon gases in the sediments consisted of methane (697.9-6054.4 ppm), ethane, propane, butane and hexane. The total carbon content of the sediments ranges from 1.84fe to $5.11{\%}$ and the total organic carbon content ranges from $0.29{\%} \;to\; 2.65{\%}$. High C/N ratio (>10) indicates that input of terrestrial organic matter was prevalent at the time of deposition. The methane content and stable isotopic data indicate that hydrocarbon gases from the sediments are identified to be thermogenic gas and mixture of both biogenic and thermal gases. Based on the Rock-Eval and carbon isotopic data, the level of thermal maturity of organic matter in the sediments $(Tmax<425^{\circ}C)$ is lower than that of gas. It suggests that thermal gases in the sediments migrated from the deeper sediments than the penetrated depth.

  • PDF

Water Depth Change Caused by Artificial Structures in Geum River Estuary: Spatio-Temporal Evaluation Based on GIS (금강하구에서 인공 구조물에 의한 수심 변화 : GIS 기반의 시.공간 평가)

  • Lee, Hyun-Hee;Um, Jung-Sup
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.121-132
    • /
    • 2007
  • This paper examines the spatial and temporal variability in the water depth caused by artificial structures in Geum Estuary of South Korea. Water depth data set extracted from marine maps of 1979, 1990, 1996 and 2004 were used in a GIS to derive volumetric estimates of gains and losses of sedimentary material. Artificial structures caused above 2m in water depth to be shallow between 1979 and 2002 in the estuary system, particularly through disturbance of a natural transport in suspended sediment concentrations. The mutt significant change in suspended sediment transport were observed in area affected by embankment for fresh water, inducing the water depth shallower than before in almost 80% of the area. This was probably because of an continuous abundant mud supply from coastal river oven after blocking the fresh water. The spatial analysis made it possible to identify area wide patterns of water depth change subject to many different type of artificial structures, which tanner be acquired by traditional field sampling. It is anticipated thai this research could be used as a valuable reference to confirm the outputs from past field researches for sedimental process in more visual and quantitative manner.

Basic Marine Environmental Characteristics of Suspended Sediments in the Inner Shelf Zone off Tae-An Peninsula, West Coast of Korea (한반도 서해 태안반도 연근해 부유퇴적물의 기초 해양환경적 특성)

  • 최진용;박용안
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1996
  • A study on the concentrations of total suspended matters (TSM) and their distribution pattern was conducted off the west coast of Tae-An Peninsula during the spring season. Especially non-destructive and fine-tuned analysis for the size-distribution of suspended matters was made using SPECTREX instrument. Water masses were characterized by the typical tidal front, with vertically homogenous coastal waters and the strong thermoclines on the offshore area. Concentrations of suspended matters were generally less than 10 mg/l, but the concentrations increased up to 25 mg/l at the bottom waters and mid-depth waters. Mean particle size of the suspended matters were generally 5-6$\mu\textrm{m}$ and 8-10$\mu\textrm{m}$ for the fine-grained suspended matters and the coarse-grained suspended matters, respectively. They are considered to be composed dominantly of detrital materials. On the coastal area, landward side of tidal front, bottom sediments can be easily resuspended by the strong tidal currents, and therefore, deposition of suspended materials are thought to be rather limited. On the offshore area, however, suspended sediments mostly supplied from the northern part of the present study area near Kyunggi Bay are thought to be transported southward and/or southwestward along the mid- depth layer of strong thermocline.

The Geomorphic Changes of Sand-Beach Coasts by Human Impact in Byeonsan Peninsula, Southwest Korea (인간간섭에 따른 변산반도 사빈해안의 지형변화)

  • CHOI, Hoon;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.83-96
    • /
    • 2012
  • The origins of beaches at Byeonsan Peninsular, as a pocket type, are classified to a sand barrier type and wave-cut type. The beaches had developed by the deposition of the silt and clay layers on the 10m height from sea level in the inner bay during climax era of postglacial transgression. At that time, some sands had blown toward the inland hills to form aeolian deposits. After postglacial sea-level stabilization, sometimes, there has been the negative budget of beach materials. Recently, beaches have been transformed by human impact such as construction of Saemangeum sea-wall, especially in the Byeonsan and Gosapo beaches being close to the sea-wall. So the speed of tidal currents become slower and comparatively depositoinal activity stronger. And the level of chemical weathering has been higher. In Byeonsan beach, the ratio of coarse sand decreased with higher ratio of finer materials and by beach erosion dissected runnels developed, running parallel to the coastline. In Gosapo beach, supply of suspended materials are increased through the Garyeok drainage gate, the sands tend to be finer.

Sedimentary Characteristics in the Tidal Flat of Janghwa-ri, Kangwha Island, Eastern Yellow Sea (강화도 장화리 조간대의 퇴적 특성)

  • Oh, Jae-Kyoung;Do, Jong-Dae;Jo, Yong-Gu
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.328-340
    • /
    • 2006
  • In Janghwa-ri of Kanghwa Island morphological changes in four transects, 112 surface, and 2 core sediments were analyzed to understand the seasonal variation of the muddy tidal-flat environment. Sedimentary of facies can be classified into four facies; sand, muddy sand, sandy mud, and silt. During winter, the coarse-grained sediment facies expanded seaward. In the subsurface part of the core sediments, poorly sorted silty sediments dominate the area. According to the Pb-210 isotope analysis, accumulation rates of the tidal flat in Jangwha-ri appear to be $5{\sim}19mm/yr$. In the study area, the result is suggestive of a rapid change in depositional environments in recent years.

Analysis of Relationship between Kanghwa Tidal Flat Channel and Sedimentary Facies Using EOC. (EOC를 이용한 강화도 갯벌 조류로와 퇴적상과의 관계 연구)

  • 유주형;우한준;유홍룡;안유환
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.475-479
    • /
    • 2004
  • 위성에서 감지되는 조간대 원격 반사도는 함수율, 퇴적상, 지형과 생물체 등의 영향에 의해 결정된다. 따라서 다른 환경요인을 제거하지 않고 위성자료 값을 분류하여 퇴적상과 비교한다면 좋은 결과를 얻을 수 없다. 하지만 퇴적상과 다른 환경요인은 관계가 복잡하고 미묘하게 얽혀있기 때문에 위성 자료 값에서 정량적으로 분리하거나 고려하는 것은 매우 어렵다. 특히 mud flat의 조류로나 세곡 부분은 배수구배의 발달로 인해 표층이 빠르게 마르게 되어 매우 높은 광학 반사도를 보이고 이는 sand가 우세한 지역의 높은 광학반사도와의 구별을 어렵게 만든다. 따라서 본 연구에서는 위성자료의 원격반사도 값만으로 조간대의 표층 퇴적상을 분류할 경우 에러가 발생할 수 있는 이러한 문제를 해결하기 위하여 조간대 texture와 표층 퇴적상과의 관계를 파악하고자 한다. 6.6 m 해상도를 갖는 EOC 자료를 이용하여 조류로의 형태와 밀도를 알아내고, 현장에서 샘플 된 입도 자료를 분석하여 비교함으로서 상관관계를 알아보고자 한다. mud flat의 경우, 대부분 복잡한 texture 구조를 갖고 밀도가 매우 높게 나타났으며 mixed flat 지역에서는 직선 구조를 갖는 큰 조류로가 발달하며 일부지역에서는 표면수가 잔존함에 의해 조간대에서 가장 어둡게 나타났다. 반면 sand shoal 이나 chenier 등과 같이 sand의 함량이 매우 높은 곳에서는 지형이 높아 함수율이 매우 낮아 높은 광학 반사도를 보임을 알 수 있었다.

  • PDF

Gugokri-Nongdari Sedimentary Succession and Environment in the Southwestern Eumsung Basin (Cretaceous), Korea (백악기 음성분지 남서부의 구곡리-농다리 퇴적층과 퇴적환경)

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • The Cretaceous Eumsung (Eumseong) Basin is a pull-apart basin, formed along a series of the Gongju strike-slip faults trending NE-SW. The Nongdari-Meer forest of the Gugokri area in the southwestern part of the basin is comprised of thick purple mudstone, intercalating conglomerate, pebbly sandstone, and green mudstone beds. The succession mainly consists of seven sedimentary facies: stratified conglomerate (C2), conglomerate encased in siltstone (CE), stratified pebbly sandstone encased in siltstone (PSE2), purple sandy siltstone (Zp), green sandy siltstone (Zg), purple mudstone (Mp), and green mudstone (Mg). Sedimentary environment is mainly indicative of alluvial-plain setting in an alluvial-to-lacustrine sedimentary system, developed in the southwestern part of the basin. Geological survey was fulfilled in succession of the Gugokri sedimentary system using 1:5000 topographic map, which resulted in a geological route map. This study newly suggested that there be fluvial systems showing ENE and NNE trends in the study area, based on data of palaeocurrent direction and sedimentary characteristics in new outcrops of the forest. The study also revised the precedent sedimentation model of the Gugokri system.

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.