• Title/Summary/Keyword: 퇴적물 이동방향

Search Result 76, Processing Time 0.032 seconds

Transport Paths of Surface Sediment on the Tidal Flat of Garolim Bay, West Coast of Korea (황해 가로림만 조간대 표층퇴적물의 이동경로)

  • Shin, Dong-Hyeok;Yi, Hi-Il;Han, Sang-Joon;Oh, Jae-Kyung;Kwon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 1998
  • Two-dimensional trend-vector model of sediment transport is first tested in the tidal flat of Garolim Bay, mid-western coast of the Korean Peninsula. Three major parameters of surface sediment, i.e., mean grain size, sorting and skewness, are used for defining the best-fitting transport trend-vector on the sand ridge and muddy sand flat. These trend vectors are compared with the real transport directions determined from morphology, field observation and bedforms. The 15 possible cases of trend vectors are calculated from total sediments. In order to find the role of coarse sediments, trend vectors from sediments coarser than < 4.5 ${\phi}$, (sand size) are separately calculated from those of total sediments. As compared with the real directions, the best-fitting transport-vector model is the "case M" of coarse sediments which is the combined trend vectors of two cases: (1) finer, better sorted and more negatively skewed and (2) coarser, better sorted and more positively skewed. This indicates sand-size grains are formed by simpler hydrodynamic processes than total sediments. Transported sediment grains are better sorted than the source sediment grains. This indicates that consistent hydrodynamic energy can make sediment grains better sorted, regardless of complicated mechanisms of sediment transport. Consequently, both transported vector model and real transported direction show that the source of sediments are located outside of bay (offshore Yellow Sea) and in the baymouth. These source sediments are transported through the East Main Tidal Channel adjacent the baymouth. Some are transported from the subtidal zone to the upper tidal flat, but others are transported farther to the south, reaching the south tidal channel in the study area. Also, coarse sediment grains on the sand ridge are originally from the baymouth, and transported through the subtidal zone to the south tidal channel. These coarse sediments are moved to the northeast, but could not pass the small north tidal channel. It is interpreted that the great amount of coarse sediments is returned back to the outside of the bay (Yellow Sea) again through the baymouth during the ebb tide. The distribution of muddy sand in the northeastern part of study area may result from the mixing of two sediment transport mechanisms, i.e., suspension and bedload processes. The landward movement of sand ridge and the formation of the north tidal channel are formed either by the supply of coarse sediments originating from the baymouth and outside of the bay (subaqueous sand ridges including Jang-An-Tae) or by the recent relative sea-level rise.

  • PDF

A General Formula of Total Sediment Transport Rate for Waves and Currents (범용 파랑.흐름 공존시의 비점착성 퇴적물이동 예측식)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.462-469
    • /
    • 2009
  • This study suggests a general formula of non-cohesive sediment transport rates for waves and currents which is also valid for wave only or current only condition. On-offshore sediment transport rates with the second order Stokes wave in the shallow water are calculated as the pickup rate times the distance. The formula depicts reasonably that high waves move material offshore, and low waves move material onshore. Also the formula, as is the case the waves with long period tend to move material onshore, shows good results.

Exploring the Applicability of Grain Size Trend Analysis to Understanding the Morphological Responses of the Deltaic Barrier Islands in the Nakdong River (낙동강 삼각주연안 사주섬의 지형변화에 대한 입도경향 분석의 활용도 탐색)

  • Kim, Sung-Hwan;Rhew, Ho-Sahng
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Grain-size trend analysis is the methodology to obtain the net sediment transport pattern from the spatial trends of grain size parameters. It has the potentials to be an effective tool to address the morphological changes of the deltaic barrier islands in the Nakdoog River once we make sure net transport patterns inferred from grain size trend analysis represent the morphological evolution patterns. This research aims to investigate the applicability of the net transport patterns obtained by 'transport vector', proposed by Gao and Collins(1992), to understanding the morphological changes of the Nakdong River deltaic barrier islands. The results indicate that the net transport directions are overall in concordance with the morphological evolution patterns; however, the level of concordance is low in the island with fast growing rate. The reasons may be match or mismatch of temporal scales involved between processes represented by net transport patterns and morphological change analyzed or the rate of morphological change. Consequently, the application of grain size trend analysis in analyzing the morphological changes of deltaic barrier islands requires the careful consideration of temporal scales involved.

  • PDF

Selective Suspension of Sediment under Waves and Currents on the Inner Shelf

  • 이관홍
    • Proceedings of the KGS Conference
    • /
    • 2003.11a
    • /
    • pp.29-33
    • /
    • 2003
  • Sandy shoreface에서 외해로 가면서 퇴적물의 입경이 작아지는 퇴적물의 분급이 이루어지고 있다는 것은 잘 알려진 사실이다 (e.g., Inman 1953; Niedoroda et al.,1985; Bailard and Bowen 1981; Guillen and Hoekstra, 1996). 이러한 cross-shore의 퇴적물 입경 분급에 중요한 mechanism은 표층에서 상대적으로 큰 입자들이 bedload로 해안으로 이동하는 반면, 표층에서 높이 부유한 부유 퇴적물이 외해로 운반되는 양 방향 퇴적물 이동이라고 할 수 있다. (중략)

  • PDF

Transport of Sandy Sediments in the Yellow Sea off Tae-An Peninsula, Korea (한반도 황해 중부 태안반도 근해 사질퇴적물의 이동)

  • 최동림;김성렬
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • Tidal sand ridges and sand waves are well developed in the Yellow Sea off Tae-An Peninsula, Korea. Their transport directions were inferred based on high resolution seismic profiles, surficial sediment characteristics and tidal regime. Tidal sand ridges are asymmetric, with long axes parallel to or slightly oblique to the dominant NE-SW tidal current direction. They show steep south and/or southeast flanks, which are in concordance with the apparent direction of internal cross-bedding in the south. Holocene sediments occur in accordance with distributional patterns of tidal sand ridges. These features indicate that Holocene active tidal sand ridges move toward the open sea in southeast, south and southwest direction. Sand waves which are distributed in flat sea floor with depth of about 40-60m show also asymmetric forms with a steep east-to-northeast face. Surficial sediments in the sand wave field are characterized by well sorted fine sands compared with poorly sorted adjacent areas. The sand waves appear to undergo easterly or northeasterly landward movement.

  • PDF

Sedimentary Processes of Fine-grained Sediment around Intake of Pyongtaek Power Plant, West Coast of Korea (평택화력발전소 취수구 주변 해역에서 세립질퇴적물의 운반양상)

  • 류상옥;장진호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.247-256
    • /
    • 2002
  • Distribution of surface and suspended sediments was studied to understand sedimentary processes of finegrained sediment near the cooling water intake of Pyongtaek power plant on the west coast of Korea. The grainsize of surface sediment during the winter was coarser in the opened northern area than sheltered southern area. During the summer, finer sediment was found in the east (landward) than west due under dominantly the influence of tidal current. The concentration of suspended sediments was higher in the winter than summer and in the mid- to deep waters than surface waters. Asymmetry of tidal current induced net landward transport of suspended sediments. Landward transport of suspended sediments was most significant at the beginning of flood time when water level is low. Net suspended sediment fluxes ranged from 3.4$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ to 5.7$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ This large landward transport of suspended sediments is attributable to combination of enhanced flow induced by intake of cooling water and artificial structures near the water intake.

History and Characteristics of Tidal Sand Ridges in Kyeonggi Bay, Korea (경기만에 발단한 조류성사퇴의 역사 및 특성)

  • 방효기;이호영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.278-286
    • /
    • 1994
  • Tidal sand ridges, which develop in Kyeonggi Bay generally parallel to the direction of tidal current on the sea bottom are also well shown in seismic profiles, surface and core samples were obtained from sand ridge field near the Palmi Do for the study of origin and sedimentary environments of these sand ridges. Sand ridge field near Palmi Do can be divided into 3 seismic units(unit A, B, C), and each unit has one sand ridge(ridge A, B, C), Ridge A that shows clinoform prograding southeastwards is generally parallel with tidal current trending northeast to southwest(40$^{\circ}$). It means that sand ridge is migrating to southward. Unit B includes a sand ridge and a channel fill structure in seismic profiles. Compared with ridge A, ridge B has similar direction, magnitude and internal reflectors. So ridge B developed in the similar sedimentary environments to ridge A about 10 m lower than present sea level. As the rise of sea level, channel fill structure formed as the deposit of fine sediments with the shape of conformable bedding or horizontal bedding.

  • PDF

Seasonal Variation of Surface Sediment Distribution and Transport Pattern Offshore Haeundae Beach Area (해운대 연안 표층퇴적물 분포의 계절변화와 이동)

  • Kim, Seok-Yun;Jeong, Joo-Bong;Lee, Byoung-Kwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • To study the seasonal pattern of sediment distribution and the transport tendency in Haeundae nearshore area; i) the grain size texture of surface sediment was examined in June, October, and December of 2007, and March and June of 2008, and secondary, ii) the transport tendency was studied by using a two-dimensional sediment transport model of Gao and Collins (1992), and finally, iii) the bathymetric changes were analyzed by using the data collected in February, May, August, and December of 2007 by Haeundae District Office. Spatial distribution of sediment texture, the tendency of sediment transport as well as the bathymetric change showed significant seasonal variations. From June to December of 2007, the eastern part of the Haeundae area, off Dalmaji Hill showed the coarsening of mean grain size with a prominent transport tendency toward the Haeundae beach. On the contrary, the western part of the area, off Dongbaek Island showed a fining trend of mean grain size, and the transport tendency toward the beach was relatively weakened. From December of 2007 to June of 2008, the mean grain size of Mipo Harbor became finer, and the transport tendency toward the central beach decreased. The mean grain size of Dongbaek Island became coarser, while the tendency increased in the direction of the beach. The areas of significant net accumulation and erosion were depicted based on the bathymetric changes between observation periods. During the period of February to May of 2007, net accumulation was observed on the eastern part of the study area, in front of Mipo Harbor. Erosion was generally occurred throughout the area from May to August of 2007. From August to December of 2007, erosion and accumulation was observed off Mipo Harbor and Dongbaek Island, respectively. The change of sediment facies also suggests the accumulation on the eastern coast during the spring, erosion around the entire coast during the summer, and accumulation on the western coast during the winter. The changes in the accumulation and erosion were most apparent during the summer when several typhoons have passed by, while unnoticeable during the spring.

Seasonal Variation of Residual Flow and Prospect for Sediment Transport in the Macrotidal Coastal Area (대조차 연안해역의 계절적 잔차류 변화와 퇴적물 이동 예상)

  • Lee, Jong Dae;Yoon, Byung Il;Kim, Jong Wook;Kim, Myung-Seok;Jeong, Jae-Soon;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • In order to investigate current characteristics at the Gungpyung beach, which is a macrotidal flat, field measurements were carried out in the summer and winter at the intertidal and the subtidal zones. The distribution of residual current at intertidal flat was dominant in the northward direction in the summer and dominant in the northward and southwestern directions in the winter. The direction and speed of the residual current in the winter are highly correlated with the significant wave height, and the turbidity is also highly correlated with the significant wave height. Therefore, in the winter, high sediment rates are suspended by high waves, and sediments are transporting due to the residual current in the southwest direction. On the other hand, it is expected that the northward residual current is predominant due to the small wave in the summer, and sediment transport does not occur largely due to less suspended sediments. In addition, sediment transport in the southern direction is blocked by the dock, which is the artificial structure, and the erosion occurs in the south side of the dock. The erosion pattern in the macrotidal zone of Yellow sea is dominated by seasonal waves, and blocking of sediments by artificial structure is very important.

Shoreline Change Based on Long Term Wind Statistics in Suyeong Bay (장기 바람 관측 통계치에 의한 수영만의 해안선 변화)

  • Kang, Hyo-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.150-156
    • /
    • 1994
  • Shoreline change due to the littoral drift in Suyeong bay, especially the Gwanganri and Haeundae beaches, was investigated. Average monthly frequency. speed. and direction of winds blowing from between east and south for the last 15 years were analysed, and offshore significant waves were hindcasted using the JONSWAP model. Wave refractions, shoaling, and breaking weir also investigated for the calculation of littoral drift. At the Gwanganri beach major longshore transport of sands occurs from the southwest to the northeast and the shoreline seems to advance in the northeast while it recedes in the southwest. At the Haeundae beach the sands mainly move from the east to the west and the shoreline retreats in the east and advances in the west.

  • PDF