• Title/Summary/Keyword: 퇴적물 기원지

Search Result 81, Processing Time 0.026 seconds

Provenance Study of 99MAP-P63 Core Sediments in the East China Sea (동중국해 99MAP-P63 코어 퇴적물의 기원지 연구)

  • Choi, Jae Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.257-266
    • /
    • 2018
  • East China Sea (ECS) is known to be supplied with large amounts of sediments form Huanghe, Changjiang and various rivers in Korea. Many studies have been conducted to identify the effects of rivers and deposition process of ECS, but no consensus has been reached. In this study, clay minerals, rare earth elements (REEs) and grain size were analyzed to study the provenance and sedimentation environment of core 99MAP-P63 in ECS. Clay mineral contents of 99MAP-P63 are abundant in order of illite, chlorite, kaolinite, and smectite. The provenance of 99MAP-P63 sediments using clay minerals is interpreted as the Changjiang regardless of depth. As a result of REEs analysis, 99MAP-P63 sediments are very similar to Chinese rivers sediments. Therefore, the provenance of 99MAP-P63 is Changjiang, and the influence of Korean river seems to be insignificant. 99MAP-P63 sediments are generally classified as sandy silt, but the top of the core is divided into sand with a sand contents of 85 %. Compared with surrounding cores, sandy silt sediments arecorresponded to the low stand stage when sea-level was low, and the sediments were thought to have been supplied directly through the paleo-Changjiang. Sandy sediments in uppermost of core are corresponded to transgressive stage. Although distance from estuary was increased due to sea-level rise, it was possible to supply coarse sediments due to high bottom stress, and the paleo-Changjiang sediments deposited in study area were re-deposited.

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea (황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지)

  • Ha, Hun Jun;Chun, Seung Soo;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2013
  • In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.

Geochemical Composition and Provenance of Surface Sediments in the Western Part of Jeju Island, Korea (제주도 서부해역 표층퇴적물의 지화학적 조성과 기원 연구)

  • Youn, Jeung-Su;Kim, Tae-Joung
    • Journal of the Korean earth science society
    • /
    • v.29 no.4
    • /
    • pp.328-340
    • /
    • 2008
  • To discriminate the provenance of shelf sediments in the western part off Jeju Island, the textual and elemental compositions were analyzed and compared with the sediments originating from Changjiang and Huanghe Rivers of China and the Korean (Keum) River. The sediments in the study area are composed of coarse silt with a mean pain size of $3.6{\sim}8.5{\phi}$ and their $CaCO_3$ contents ranged from 0.92 to 9.75 wt.%. The ratios of TOC over total nitrogen (TN) showed that the study area sediments contained more organic matters of marine origin than those of terrigenous origin. The high concentration of Fe/Al, Ti/Al and Mn/Al figures were found in the southwestern part near the Changjiang esturay, indicating that it seemed to result from the influence of the Changjiang River. The discrimination diagrams including Sc/Al vs Cr/Th, Th/Sc vs Nb/Co and Ti/Nb vs Th/Sc were thus used as provenance indicators to identify the sediment origins of the western part off Jeju Island. Based on these discriminated diagrams it clearly showed that most of the sediment in the western part were originated from the Huanghe River, but the sediments in the southwestern part near the Changjiang esturay might come from the Changjiang River. In contrast, the sediment samples of the northeastern part showed the higher figures than those of the river sediments and other regions, suggesting that the sediments in the western part off Jeju Island must be originated from diverse sources.

Geochemical Characteristics of the Outer-Shelf Muddy Sediments in the East China Sea (동중국해 외대륙붕해역 니질퇴적물의 지화학적 특성)

  • Youn, Jeung-Su;Byun, Jong-Cheol;Kim, Yeo-Sang
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.198-208
    • /
    • 2006
  • To investigate the provenance of outer-shelf mud patch in the East China Sea, the geochemical compositions were analyzed and compared with those of Chinese rivers sediments. The mud sedimentary facies are distributed in the central region and sandy mud facies are also widely distributed around the study area. The major elements (Fe, Mg, K, Ti, and Mn) show strong positive correlation with Al, and trace elements also indicate the same characteristics; hence, clay minerals are likely to be the promising host for those elements. The high concentration of Fe, Ti, and Mn elements are found in the western middle part near the Changjiang estuary, indicating that it seems to result from the influence of the Changjiang River. Elemental ratios including Sc/Al, Ti/Nb, Th/Sc, Cr/Th, Nb/Co, and Th/U were thus used as provenance indicators to identify the sediment origins of the East China Sea. The discrimination diagrams clearly show that most of the sediment in the northern part are originated from the Huanghe River, while the muddy sediments in the western part near the Changjiang estuary might come from the Changjiang River, suggesting that the outer-shelf muddy sediments of East China Sea are originated from diverse sources.

Sediment Provenance of Southeastern Yellow Sea Mud Using Principal Component Analysis (주성분분석법을 활용한 황해 남동 이질대 퇴적물의 기원지 연구)

  • Cho, Hyen Goo;Kim, Soon-Oh;Lee, Yun Ji;Ahn, Sung Jin;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • In this study, we tried to determine the origin of fine-grained sediments in Southeastern Yellow Sea Mud patch (SEYSM) using principal component analysis coupled with semi-quantitative X-ray diffraction analysis for 4 major clay minerals. We used 51 marine surface sediments from SEYSM and 33 surface sediments of rivers flowing into the Yellow Sea. We made bioplot diagram using R program with principal component 1 and component 2 because the two components might contain about 98% of all data. The content of each clay mineral in the south and north regions of SEYSM are almost similar. In the biplot, SEYSM sediments distribute close to Korean rivers sediments than Huanghe and Changjiang sediments. Based on these results, we suggest that SEYSM is originated from the Korean rivers sediments. The higher accumulation rate in the SEYSM compared to the sediment discharge from neighboring Korean rivers can be explained by erosion and reworking of surface sediments in this area. The principal component analysis can be used for the provenance research of marine sediments around the Korean Peninsula.

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud (황해중앙이질대 퇴적물에 대한 중광물 예비 연구)

  • Lee, Bu Yeong;Cho, Hyen Goo;Kim, Soon-Oh;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • We studied the heavy minerals in 46 surface sediments collected from the Central Yellow Sea Mud (CYSM) to characterize the type, abundance, mineralogical properties and distribution pattern using the stereo-microscopy, field-Emission scanning electron microscopy (FE SEM) and chemical analysis through the energy dispersive spectrometer (EDS). Heavy mineral assemblages are primarily composed of epidote group, amphibole group, garnet group, zircon, rutile and sphene in descending order. Epidote group and amphibole group minerals account for more than 50% of total heavy minerals. The minerals in epidote group, amphibole group and garnet group in studied area are epidote, edenite and almandine, respectively. When we divided the CYSM into two regions by $124^{\circ}E$, the eastern region contain higher contents of epidote and (zircon + rutile), which are more resistant to weathering but lower of amphibole, which is less resistant to weathering than the western region. Based on this results, it is possible to estimate that the eastern region sediments are transported for a long distance while western region sediments are transported for a short distance from the source area. In the future, the additional study on the heavy minerals in river sediments flowing into the Yellow Sea and much more samples for marine sediments must be carried out to interpret exactly the provenance and sedimentation process.

Analysis of Principal Storm Surge in the Downstream of Nakdong River (낙동강 하구 표층퇴적물 분석 및 사주 지형변화)

  • Baek, Dong-Jin;Kim, Kang-Min;Lee, Sung-Chul;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.36-37
    • /
    • 2018
  • 낙동강 하구역의 퇴적환경은 육성기원 퇴적물과 해성기원 퇴적물에 따라 다양하고 복잡하게 이루어진다. 낙동강 하굿둑이 건설된 이후의 퇴적환경 특성을 파악하기 위하여 해양공학회(2003)와 수자원공사(2016)의 자료를 수집 분석하였다. 2003년과 2016년의 표층퇴적물 분석결과, 낙동강 하구는 전반적으로 사질퇴적물이 우세하고 분급도가 양호하고 중앙입경 보다 조립질의 퇴적물이 우세하게 분포되는 것으로 나타났다. 기존 연구결과와 금회 연구결과로부터 2003년 이후 낙동강 하구 퇴적환경은 평형상태를 이루고 있는 것으로 판단되며, 낙동강 하굿둑 유출 유사량과 외해측 파랑에 의한 영향이 크게 받고, 창조시의 약화된 유속으로 인하여 니질퇴적물의 이동이 줄어든 것으로 판단된다. 또한, 니질퇴적물이 우세한 구간은 사주와 갯골 부근의 간사지로, 이로 인한 낙동강 하구역의 퇴적우세 현상은 지속될 것으로 판단된다

  • PDF

Clay Mineralogy of the Gangneung-Donghae Coastal Sediments (강릉-동해 연안 퇴적물의 점토광물에 관한 연구)

  • Koo, Hyo Jin;Choi, Hunsoo;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.175-183
    • /
    • 2020
  • There have rarely been performed for the clay mineralogy of the East Sea sediments except for few studies about paleoenvironmental aspect. This study inferred the provenance of sediments based on the clay mineral characteristics and distribution pattern for the 120 sediment samples collected by the box corer from the Gangneung-Donghae area between 2017-2019. The relative proportions of the four major clay minerals are abundant in the order of illite, chlorite, kaolinite, and smectite. The continental shelf sediments below water depth 150 m have more chlorite and kaolinite content and better illite crystallinity, but less illite and smectite content, and S/I index than those of continental slope sediments. Clay mineral composition of the continental shelf sediments are influenced by the adjacent continental geology, because north site (Gangneung area) has more chlorite but south site (Donghae area) has more kaolinite. These characteristics and distribution pattern of clay minerals indicate that the provenance of sediments are different between continental shelf and continental slop. The continental shelf sediments may be introduced the study area by the adjacent small rivers whereas the continental slope sediment might be supplied by current from the south of the study area.