DOI QR코드

DOI QR Code

Geochemical Composition and Provenance of Surface Sediments in the Western Part of Jeju Island, Korea

제주도 서부해역 표층퇴적물의 지화학적 조성과 기원 연구

  • 윤정수 (제주대학교 해양과학대학) ;
  • 김태정 (제주대학교 해양과학대학)
  • Published : 2008.08.30

Abstract

To discriminate the provenance of shelf sediments in the western part off Jeju Island, the textual and elemental compositions were analyzed and compared with the sediments originating from Changjiang and Huanghe Rivers of China and the Korean (Keum) River. The sediments in the study area are composed of coarse silt with a mean pain size of $3.6{\sim}8.5{\phi}$ and their $CaCO_3$ contents ranged from 0.92 to 9.75 wt.%. The ratios of TOC over total nitrogen (TN) showed that the study area sediments contained more organic matters of marine origin than those of terrigenous origin. The high concentration of Fe/Al, Ti/Al and Mn/Al figures were found in the southwestern part near the Changjiang esturay, indicating that it seemed to result from the influence of the Changjiang River. The discrimination diagrams including Sc/Al vs Cr/Th, Th/Sc vs Nb/Co and Ti/Nb vs Th/Sc were thus used as provenance indicators to identify the sediment origins of the western part off Jeju Island. Based on these discriminated diagrams it clearly showed that most of the sediment in the western part were originated from the Huanghe River, but the sediments in the southwestern part near the Changjiang esturay might come from the Changjiang River. In contrast, the sediment samples of the northeastern part showed the higher figures than those of the river sediments and other regions, suggesting that the sediments in the western part off Jeju Island must be originated from diverse sources.

제주도 서부해역에 분포하는 퇴적물의 기원지를 밝히기 위해 이곳 표층퇴적물의 지화학적 조성을 분석하였으며, 그 결과를 중국의 황하와 양자강 그리고 한국의 강 퇴적물과 비교 연구하였다. 연구지역 퇴적물의 평균입도는 $3.6{\sim}8.5{\phi}$ 범위의 조립질실트 퇴적상으로 구성되며 탄산염 함량은 $0.92{\sim}9.75%$(평균 3.65%)범위를 갖는다. 총유기탄소와 총질소(TN)의 비율(평균 9.4)에서 연구지역의 유기물은 육성 기원보다 해양성 기원이 상대적으로 우세하였다. 주성분 원소들의 공간분포에서 Fe/Al, Mn/Al, Ti/Al의 함량비는 양자강 하구역과 가까운 남서쪽 지역에서 높은 농도를 보여 양자 기원 물질이 연구지역으로 유입되고 있음을 추론케한다. 연구지역 퇴적물의 Sc/Al 대 Cr/Th, Th/Sc 대 Nb/co, Ti/Nb 대 Th/Sc의 지화학적 구분지수는 황하와 양자강가원 퇴적물을 구분해 주는 유용한 지화학적 지시자로 제시될 수 있었다. 연구지역의 서쪽에 분포하는 대부분의 퇴적물은 황하기원 퇴적물과 유사한 특징을 보였고 양자강 하구역과 가까운 남서쪽 지역의 퇴적물은 양자강기원 퇴적물과 유사성을 보였으며, 북동쪽 지역에 분포하는 퇴적물 시료는 다른 지역 퇴적물 보다 높은 비 값을 보여, 따라서 제주도 서부해역은 복합기원 퇴적물이 집적되고 있음을 의미한다.

Keywords

References

  1. 박명호, 김지훈, 서광수, 2005, 제주도 동부지역 제4기 신 양리층의 지화학적 특성 연구. 지질학회지, 41, 19-33
  2. 박용안, 최진용, 이창복, 김대철, 최광원, 1994, 한국서해 중부해역 대륙붕 퇴적물의 분포와 퇴적작용. 한국해양학회지, 29, 357-365
  3. 임동일, 신인현, 정회수, 2007, 한국과 중국의 강 퇴적물의 주성분원소 함량특성: 황해 니질퇴적물의 기원지 연구 를 위한 잠재적 추적자. 한국지구과학회지, 28, 311-323 https://doi.org/10.5467/JKESS.2007.28.3.311
  4. 윤정수, 김여상, 2002, 황해 중앙부해역 니질퇴적물의 지화 학적 특성 및 퇴적률. 한국제4기학회지, 16, 1-16
  5. 윤정수, 변종철, 김여상, 2006, 동중국해 외대륙붕해역 니질 퇴적물의 지화학적 특성. 한국지구과학회지, 27, 198-208
  6. 윤정수, 임동일, 변종철, 정회수, 2005, $^87$Sr/$^86$Sr비를 이용한 동중국해역 대륙붕 퇴적물의 기원연구. 한국해양학회지,10, 92-99.
  7. 천종화, 허식, 한상준, 신동혁, 이희일, 김성렬, 2000, 황해 중심부 해역에서 저해수면 시기에 형성된 후기 플라이 스토세 산화대층의 특성 및 고해양학적 중요성. 지질학회지, 36, 517-528
  8. 현상민, 천종화, 이희일, 1999, 시화호의 퇴적환경과 중금속 오염. 한국해양학회지, 4, 198-207
  9. Alexander, C.R., DeMaster, D.J., and Nittrouer, C.A., 1991, Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology, 98, 51-72 https://doi.org/10.1016/0025-3227(91)90035-3
  10. Bordovsky, O.K., 1965, Sources of organic matter in marine basins. Marinre Geology, 3, 5-32 https://doi.org/10.1016/0025-3227(65)90003-4
  11. Bowen, H.J.M., 1979, Environmental Chemistry of the Elements. Academic Press, London, UK, 333 p
  12. Byers, S.C., Mills, E.L., and Stewart, P.I., 1978, A comparison of method for determining organic carbon in marine sediments with suggestion for a standard method. Hydrobiology, 58, 43-47 https://doi.org/10.1007/BF00018894
  13. Calvert, S.E., 1976, The minerology and geochemistry of near-shore sediments. In Riley, J.P. and Chester, R., Chemical Oceanography. Academic Division of Unwin Hyman Ltd Press, London, UK, 6, 187-280
  14. Calvert, S.E., Pedersen, T.F., and Karlin, R.E., 2001, Geochemical and isotopic evidence for post-glacial palaeoceangraphic chenages in saanich Inlet, British Columbia. Marine Geology, 174, 283-305
  15. Chough, S.K. and Kim, D.C., 1981, Disperal of finegrained sediments in the southeastern Yellow Sea: A steady-state model. Journal of Sedimentary Petrology, 51, 721-758
  16. Cromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L., 1984, The North American shale composite: Its compilation major and trace element characteristics. Geochemica et Cosmochimica Acta, 48, 2468-2482
  17. Ergin, M., Kazan, B., and Ediger, V., 1996, Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Iskenderun, Eastern Mediterranean. Marine Geology, 133, 223-239 https://doi.org/10.1016/0025-3227(96)00011-4
  18. Folk, R.L. and Ward, W.C., 1957. Brazor river bar: A study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27, 3-27 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  19. Galehouse, J.S., 1971, Sedimentation analysis. In Carver, R.E., Procedures in Sedimentary Petrology. Wiley-Interscience, NY, USA, 69-94
  20. Goldberg, E.D. and Arrhenius, G.O.S. 1958, Chemistry of Pacific pelagic sediments. Geochemica et Cosmochimica Acta, 13, 153-143 https://doi.org/10.1016/0016-7037(58)90046-2
  21. Ingram, R.L., 1971, Sieve analysis. In Carrer, R.E., Procedure in Sedimentary Petrology. Wiley-Interscience, NY, USA, 49-68
  22. Kitano, Y. and Hujiyoshi, R., 1980, Selective chemical leaching of cadmium, coppr, and manganese and iron in marine sediments. Geochemical Journal, 14, 113-122 https://doi.org/10.2343/geochemj.14.113
  23. Lee, C.B. and Na, T.K., 2003, Geochemical discrimination of fine-grained sediments entering the Yellow and East China Seas from the Yangtze, Huanghe and Korean rivers. Proceeding of the International Symposium on Oceanographic Environmental Change after Completion of the Changjiang Three Gorges Dan. Journal of the Korean Society of Oceanography, 9, 99-122
  24. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C., and Ahn, K.S., 2007, Recent sediment accumulation and origin of shelf mud deposits in the Yellow Sea and East China Seas. Oceanography, 73, 145-159. (In progress)
  25. Liu, Z.X., Beme, S., Saito, Y., Lericolasis, G., and Marsset, T., 2000, Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asian Earth Science, 18, 441- 452 https://doi.org/10.1016/S1367-9120(99)00077-2
  26. Martin, J.M. and Meybeck, M., 1979, Elemental mass balance of material carred by major world rivers. Marine Chemisrty, 7, 173-206 https://doi.org/10.1016/0304-4203(79)90039-2
  27. McLennan, S.M., 1989, Rare earth elements in sedimentray rocks: Influence of provenance and sedimentary processes. Review Mineralogy, 21, 170-199
  28. Milliman, J.D., Beardslay, R.C., Yang, Z.S., and Limebruner, R., 1985, Modern Huanghe deived mud on the outer shelf of the East China Sea: Identification and potential transport mechanisms. Continental Shelf Research, 4, 175-188 https://doi.org/10.1016/0278-4343(85)90028-7
  29. Milliman, J.D. and Meade, R.H., 1983, World-wind delivery of river sediment to the ocean. Journal of Geology, 91, 1-21 https://doi.org/10.1086/628741
  30. Moorby, S.A., 1983, The geochemistry of transitional sediments recorved from the Galspagos hydrothermal mounds field during DSDP Leg 70-implication for mound formation. Earth and Planetary Science Letter, 62, 367-376 https://doi.org/10.1016/0012-821X(83)90007-9
  31. Muller, P.J., 1977, C/N ratio in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochemica et Cosmochimica Acta, 41, 765-776 https://doi.org/10.1016/0016-7037(77)90047-3
  32. Muller, P.J. and Suess, E., 1979, Productivity, sedimentation rate, and sedimentay organic carbon in the ocean 1, Organic carbon preservation. Deep-Sea Research, 26, 1347-1362 https://doi.org/10.1016/0198-0149(79)90003-7
  33. Qin, Y., Zhao, Y., Chen, L., and Zhao, S., 1996, Geology of the East China Sea, A Series of Solid Earth Science Research in China. Science Press, Beijing, China, 357 p
  34. Sawlan, J.J. and Marray, J.W., 1983, Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letter, 64, 213-230 https://doi.org/10.1016/0012-821X(83)90205-4
  35. Schubel, J.R., Shen, H.T., and Park, M.J., 1984, A comparison of some characteristic sedimentation process of estuaries entering the Yellow Sea. Preceedings of Korea-U.S. Seminar and Workshop, Marine Geology and Physical Processes of the Yellow Sea, 286-308
  36. Stein, R., 1990, Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sedi-ments. Geo-Marine Letter, 10, 37-44 https://doi.org/10.1007/BF02431020
  37. Stevenson, F.J. and Cheng, C.N., 1972, Organic geochemistry of the Argentine Basin sediments: Carbon-nitrogen relationships and Quaternary correlations. Geochemica et Cosmochimica Acta, 36, 653-671 https://doi.org/10.1016/0016-7037(72)90109-3
  38. Taylor S.R. and McLennan, S.K., 1985, The continental crust: Its composition and evolution. Blcakwell, Oxford, USA, 312 p
  39. Turekian, K.K. and Wedepohl, K.H., 1961, Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175-192 https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  40. Yang, S.Y., Jung, H.S., and Lim, D.I., 2003, A review on provenance discrimination of the Yellow Sea sediments. Earth-Science Reviews, 63, 93-120 https://doi.org/10.1016/S0012-8252(03)00033-3
  41. Yang, S.Y., Lim, D.I., Jung, H.S., and Oh, B.C., 2004, Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology, 206, 41-53 https://doi.org/10.1016/j.margeo.2004.01.005
  42. Yang, S.Y. and Youn, J.S., 2007, Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology, 243, 229-241 https://doi.org/10.1016/j.margeo.2007.05.001
  43. Yang, Z.S. and Milliman, J.D., 1983, Fine-grained sediments of Changjiang and Huangho Rivers and sdiment sources of the East China Sea. Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Vol. 2, China Ocean Press, Beijing, China, 436-446
  44. Zhao Y.Y., Qing, Z.Y, and Li, F., 1990, On the source and genesis of the mud in the central area of the south Yellow Sea. Chinese Journal of Oceanology and Limnolnology, 8, 66-73 https://doi.org/10.1007/BF02846453

Cited by

  1. Acoustic Channel Formation and Sound Speed Variation by Low-salinity Water in the Western Sea of Jeju during Summer vol.32, pp.1, 2013, https://doi.org/10.7776/ASK.2013.32.1.001
  2. Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.289
  3. Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.001
  4. Simulation of Temporal Variation of Acoustic Transmission Loss by Internal Tide in the Southern Sea of Jeju Island in Summer vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.012