• Title/Summary/Keyword: 퇴비사

Search Result 35, Processing Time 0.011 seconds

Conducted to Verify the Effect of Chlorine Dioxide (ClO2) on Odor Reduction at a Compost Facility (이산화염소 가스분무에 의한 퇴비장 악취저감 효과)

  • Song, J.I.;Jeon, J.H.;Lee, J.Y.;Park, K.H.;Cho, S.B.;Hwang, Y.H.;Kim, D.H.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.1-6
    • /
    • 2012
  • This study was conducted to verify the effect of chlorine dioxide ($ClO_2$) on odor reduction at a commercial swine facility consisting of a compost ficility. Compost facility in $NH_3$ concentration was around 550 ppm and less than 78 ppm before and after the $ClO_2$ spraying, respectively, which was over 86% reduction. There was no H2S detection. $NH_3$ concentration was around 420 ppm and less than 35 ppm before and after the $ClO_2$ spraying, respectively, which was over 83% reduction. $H_2S$ concentration was around 210 ppb and less than 32 ppb before and after the $ClO_2$ spraying, respectively, which was over 85% reduction. Hence, $ClO_2$ spraying at windowless barns was compost facility decreased malodor such as $NH_3$.

A Review on Efficient Operation Technology of Compost Depot (퇴비사의 효율적인 운영기술에 대한 고찰)

  • Yang, Il-Seung;Ji, Min-Kyu;Jeon, Byong-Hun
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.345-356
    • /
    • 2017
  • The composting is a biological process that converts organic matter into useful resources such as fertilizers. It is a continuous transition of microbial communities to adapt changes in organic matter and environmental conditions (carbonation rate, temperature, humidity, oxygen supply, pH, etc.). Most of the composting plants are located in the proximity of the residential areas. It is a general scenario where government authorities receive complaints from the local residents due to release of odor from the composting, and has become a social problem in Korea. Identification of dominant microorganisms, understanding change in microbial communities and augmentation of specific microorganism for composting is vital to enhance the efficiency of composting, quality of the compost produced, and reduction of odor. In this paper, we suggest the optimum operation conditions and methods for compost depot to reduce odor generation. The selection of the appropriate microorganisms and their rapid increase in population are effective to promote composting. The optimal growth conditions of bacteria such as aeration (oxygen), temperature, and humidity were standardized to maximize composting through microbial degradation. The use of porous minerals and moisture control has significantly improved odor removal. Recent technologies to reduce odor from the composting environment and improved composting processes are also presented.

Investigation on the Amount of Water Evaporation from Composting Facilities Operated in Swine Farms (양돈농가에서 퇴비화시설별 수분변화량 분석에 관한 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, J.H.;Kim, J.H.;Yoo, Y.H.;Jeon, B.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • The results of the research on the amount of water evaporation from composting facilities operated in swine farms are below. The number of swine per a farm was 1433 head/farm for a Simple Composting Facility (SCF) and 3500 head/farm for a Escalator composting facility(ECF) system. The capacities of the SCF and the ECF were $0.33m^3/head$ and $0.25m^3/head$, respectively. The ECF had 24.2% less capacity than the SCF. The average water contents in the swine manure for the CP and the ECF of the surveyed farms were 86.8% and 85.7%, respectively, which revealed the ECF had 1.3% less average water content than the SCF. Daily water inputs into the SCF and the ECF were $4.1kg/m^3/day$ and $6.5kg/m^3/day$, respectively. The ECF had approximately 36.9% higher water input than the SCF. Fermentation temperatures during the composting period for the SCF and the ECF were up to $45^{\circ}C$ and $70^{\circ}C$, respectively. The decreases in water contents per each square meter for the SCF and the ECF were 3.7 kg and 5.2 kg, respectively. The ECF lost approximately 28.8% more water content than the ECF, which would be caused by the difference of fermentation temperature between two systems. Fertilizer components after composting were examined. Nitrogen contents of the SCF and the ECF were similar (0.84% and 0.86%, respectively) and ${P_2}{O_5}$ contents were 0.78% and 0.74%, respectively, showing the SCF had slightly higher content than the ECF. However, OM and OM/N did not show the difference between two systems. Hence, efforts to increase composting efficiency with considerations of the water content of swine manure, fermentation temperature, and water evaporation potential should be done when the SCF and the ECF were used in swine farms.

  • PDF

Study on the Continuous Composting Process to Reduce the Use of Bulking Agent in Pig Slurry (톱밥 절감형 돈분 슬러리 연속 퇴비화 공정 연구)

  • Ryoo, J,.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2007
  • To develop the composting system to reduce the use of bulking agent, continuous composting was performed with farmer scale facility, The plant comprises a horizontal pit reactor closed inside a greenhouse and equipped with a turning machine moving on rails. The pit was 9m wide and 50m long and the maximum height of loaded materials was $1.8m^2$. The materials remained in the reactor for 5 months. During the composting process, temperature and water content measured and water balance was evaluated. The reaction temperature of composting was changed $30{\sim}50^{\circ}C$ and high in the middle and low in under composting piles. The moisture contents of the compost were approximately 70% during the experiment. The amount of effluent was 10.6% and $3.16m^3$ of pig slurry per $1m^3$ of bulking agent was treated during continuous composting process. BOD and SS reduction of the effluent in continuous composting was 86.5% and 92.2%, respectively. Indoor relative humidity in night time was changed between 80 and 100%.

  • PDF

Effect of Organic Fertilizer Application on the Chemical Properties of the Orchard Soils and Apple Yield (사과원에서 유기질비료시용이 토양화학성 및 사과 수량에 미치는 영향)

  • Choi, Jyung;Lee, Dong-Hoon;Choi, Choong-Lyeal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.393-397
    • /
    • 2000
  • This study was conducted to find out the effect of long-term compost application on the chemical properties of the orchard soils and apple quality. The contents of P and cations in soils were increased by the application of compost, while there are no difference in that of organic matter. The increase in application rates of compost resulted to the increase in apple yields, however, firmness and Brix of apple were as not differentiated by the compost application. The application of lower chemical fertilizer and higher compost resulted to the increase in the contents of organic matter and Ca in soils. The compost application resulted to the increase in inorganic material contents in soil but was not effective on the quality of apple fruits.

  • PDF

Field Investigation of Environment Parameter in Aerobic Composting for Pig Slurry at a Scraper System (스크레파 축사에서 배출되는 돈분뇨슬러리 호기성 퇴비화의 환경요인 현장조사)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.183-192
    • /
    • 2008
  • This study was carried out to investigate the temperature, water balance, evaporation and physicochemical properties during the composting with pig slurry at a scraper system. The pig slurry was composted on farm trial using continuous aeration with turning machine for 5 month. A compost facility of rectangular concrete bin with dimension of 53 m (length) ${\times}$ 4.6 m (width) ${\times}$ 2 m (height) was bedded with sawdust. The environmental parameters were monitored in period of 5 months. The results were as follows ; 1. During the composting period, the temperature was varied in the range $50{\sim}70^{\circ}C$. The temperature of compost pile was highest in middle layer and lowest in under layer. Temperature difference between middle and under area of compost pile was $5{\sim}20^{\circ}C$. 2. The water content of compost pile varied $50{\sim}68%$. In the period of 50% of water content of compost pile, the temperature of compost was $20{\sim}30^{\circ}C$ and was not successfully composted. 3. In this study, total evaporation was 90% during composting. The amount of slurry per $1m^3$ sawdust by this method was $3.16m^3$ without treatment of effluent output. 4. The chemical properties of produced compost was high, but suitable for plant growth. Concentration of T-N, T-C in the final compost were 1.62, 34%, respectively.

  • PDF