• Title/Summary/Keyword: 통항교통량

Search Result 67, Processing Time 0.017 seconds

A Study on the Development of the Marine Traffic Analysis System Based on AIS and ENC (AIS 및 전자해도 기반 해상교통량 분석 시스템 개발에 관한 연구)

  • Kim, Dae-Hee;Song, Chae-Uk;Jung, Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.43-48
    • /
    • 2007
  • Maritime traffic engineering is a technical field that observes the flow of vessels' traffic in accurate and describes the feature of ship's movement statistically, then contributes for the improvement of traffic flow and the safety of traffic. The flow of marine traffic can be controlled by carrying out assessment and analysis of vessel's traffic. It can realize the safety of marine traffic by accurate research and analysis of vessel's traffic, understanding its flow and analysis data of vessel traffic. This study shows the analysis system of marine traffic connected with Radar, AIS based on ENC(Electronic Navigational Chart). The marine traffic analysis system contributes to the safety of marine traffic through the design of marine traffic route, harbour facilities and improvement of vessels' traffic flow.

Analysis of Long-Term Variation in Marine Traffic Volume and Characteristics of Ship Traffic Routes in Yeosu Gwangyang Port (여수광양항 해상교통량의 장기변동 및 통항 특성)

  • Kim, Dae-Jin;Shin, Hyeong-Ho;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • The characteristics of ship traffic routes and the long term fluctuation in marine traf ic volume of the incoming and outgoing routes of the Yeosu Gwangyang Port were analyzed using vessel traffic data from the past 22 years and a real-time vessel traffic volume survey performed for 72 hours per year, for three years, between 2015 and 2017. As of 2017, the number of vessels passing through Yeosu Gwangyang Port was about 66,000 and the total tonnage of these ships was about 804,564 thousand tons, which is a 400 % increase from the 189,906 thousand tons shipped in 1996. Specifically, the dangerous cargo volume was 140,000 thousand tons, which is a 250 % increase compared to 1996. According to the real-time vessel traffic volume survey, the average daily number of vessels was 357, and traf ic route utilization rates were 28.1 % in the Nakpo sea area, 43.8 % in the specified sea area, and the coastal area traf ic route, Dolsan coastal area, and Kumhodo sea area showed the same rate of 6.8 %. Many routes meet in the Nakpo sea area and, parallel and cross passing were frequent. Many small work vessels entered the specific sea area from the neighboring coastal area traffic route and frequently intersected the path of larger vessels. The anchorage waiting rate for cargo ships was about 24 %, and the nightly passing rate for dangerous cargo ships such as chemical vessels and tankers was about 20 %. Although the vessel traffic volume of Yeosu Gwangyang Port increases every year, the vessel traffic routes remain the same. Therefore, the risk of accidents is constantly increasing. The route conditions must be improved by dredging and expanding the available routes to reduce the high risk of ship accidents due to overlapping routes, by removing reefs, and by reinforcing navigational aids. In addition, the entry and exit time for dangerous cargo ships at high-risk ports must be strictly regulated. Advancements in the VTS system can help to actively manage the traffic of small vessels using the coastal area traffic route.

A Study on Consideration Factors of Traffic Safety Assessment on the Bridge Design-I (해상교량 건설을 위한 선박통항 안전성 검토요소에 관한 연구-I)

  • Park Young-Soo;Park Jin-Soo;Ko Jae-Yong;Jong Je-Yong;Lee Eun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.71-75
    • /
    • 2005
  • From the viewpoint of navigation safety, it would be best if it's possible to build a bridge whose main span is wide enough, however, sometimes it may not be possible due to geographical or economic reason To construct the bridge on the shipping route, consideration factors for marine traffic safety must be investigated and examined from the viewpoint of marine traffic engineering. This study aims to secure marine traffic safety and maintain smoothly traffic flow through assessment qf these factors. As the first step, examination factors such as traffic volume, ship size and bridge width were assessed quantitatively using marine traffic flow simulation technique.

물때별 해상교통량 분석

  • Yu, Sang-Rok;Jeong, Cho-Yeong;Yun, Cheong-Geum;Jeong, Jae-Yong;Im, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.319-321
    • /
    • 2015
  • 특정 물때, 특정 시간대에 다수 어선의 입 출항은 해상교통관제사 및 항해사에게 많은 위험부담이 된다. 본 연구는 목포항의 물때별-시간대별에 따른 교통패턴을 분석하였다. 연구 결과, 업종별 안강망, 자망 어업에 따라 교통량의 차이를 보였다. 또한, 물때별로 최대 30%까지 교통량의 차이를 보였으며, 목포구 만곡부에서는 항로 역행의 통항패턴을 보였다. 본 연구의 결과는 해역이용자에게 입 출항시 항행참고 지침 및 교육 자료로 활용될 것으로 기대된다.

  • PDF

Estimation on the Future Traffic Volumes and Analysis on Crossing Situation Risk for Gamcheon Harbor (감천항의 장래 교통량 추정 및 교차상태위험 분석)

  • Kim, Jung-Hoon;Gug, Seung-Gi;Kim, Min-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.617-622
    • /
    • 2006
  • Gamcheon Harbor was developed to cope with increased freight demand of Busan port and supplement function of the north port. Because container wharf is opened to 1997 as well as general wharf, present maximum 50,000DWT class containerships have been incoming and outgoing. However, In Gamcheon port, small size ships such as fishing boats, miscellaneous boats account for 50 percent of the traffic and a public marine products wholesale market that is building on the north wharf will open in 2008. Therefore, it needs to grasp future year traffic volume before establishing operation plan for port management. Also, analysis on crossing situation risk is required because the breakwater entrance in Gamcheon Harbor is narrow and the crossed passing of ship is ever-present at breakwater front. Thus the traffic volume in the future was presumed and quantitative analysis was achieved on crossing situation though simulations with the traffic volume.

Safe Navigation Plan for Dredging Operations to build Sunken Tunnel for Access Road between Busan-Geoje (부산-거제간 연결도로 침매터널공사의 준설작업에 따른 안전통항방안)

  • Kim, Jung-Hoon;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.825-831
    • /
    • 2006
  • This research does by purpose that present safe navigation plan for ships during doing dredging construction with dredger crossing waterway of Gadeok Dredging operations need to build sunken tunnel that cross the bottom of the sea under waterway of Gadeok for access road construction between Busan- Geoje. Accordingly, dredger must cross and dredge waterway of Gadeok fatally. There is possibility of marine accident of collision for latent danger situation of ships to navigate waterway of Gadeok relatively. Therefore, safe navigation plan of ship is groped in reply and its countermeasure is presented. Firstly, navigating traffic in daytime was forecasted less than 20% of its maximum capacity through estimating the traffic volume and traffic congestion The proposal was presented to execute dredging operations in three-step and to establish temporary waterway after reviewing waterway design principles. The role of VTS center was emphasized in the new Busan Port, lastly.

A Study on the Traffic Improvement at an Approach Area of Busan Harbor (부산항 제1항로 진입 해역의 통항 개선에 관한 연구)

  • Lee, Yun-Sok;Jung, Min;Song, Chae-Uk;Park, Jin-Soo;Park, Young-Soo;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.345-351
    • /
    • 2007
  • In approaching sea area of Busan harbour, there are many traffic vessels and external forces such as strong seasonal wind and lateral flow are existed. Since the area caused the risk of navigation and ship operators feel hard to enter/depart on Busan port, we carried our the evaluation of traffic risk and propriety at Busan no.1 fairway. In order to assess the safety in the fairway, we analyzed ship's traffic stream based on the marine traffic survey and evaluated the traffic safety of present Traffic Separation Schemes(TSS) and suggest TSS in the research using full mission ship-handling simulators. As a result, the suggested TSS has an effect on improving the traffic safety. In addition, this paper was to suggest the dredging area of depth of water, the passage of towing vessels and control of warships for preventing of maritime accidents in the Busan no.1 fairway.

Improving Assessments of Maritime Traffic Congestion Based On Occupancy Area Density Analysis for Traffic Vessels (통항선박의 점용영역 밀집도 분석을 통한 해상교통혼잡도 평가 개선에 관한 연구)

  • Kim, Soung-Tae;Rhee, Hahn-Kyou;Gong, In-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It may be reasonable to consider density per unit area over time rather than analyze traffic volume, which is simply the traffic volume per unit of time, in assessing the maritime traffic congestion of a certain area. This study contributes to the standardization of maritime traffic congestion assessment methods for the maritime traffic safety diagnosis institute while seeking a new method to minimize evaluation error due to converted traffic volume per ship tonnage level. To solve this problem, a method to evaluate maritime traffic congestion by comparing the area occupied by a vessel with the area of its route using vessel identification data from the Automatic Identification System (AIS) has been proposed. In this new model, it is possible to use actual data due to the development of information and communication technology, reducing conversion error while allowing for the evaluation of maritime traffic congestion by route.

A Study on the Entrance Channel of Restrictions on Passage of Oil Tankers in Yeosu-Gwangyang Port (여수·광양항 중심의 유조선통항금지해역 출입 항로에 관한 연구)

  • Kwon, Yu-Min;Lee, Hong-Hoon;Lee, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.439-446
    • /
    • 2017
  • The Maritime Safety Act established restrictions for the passage of oil tankers, prohibiting vessesl carrying more than 1,500 kiloliters of oil or 1,500 tons of a hazardous liquid substance. Prohibited vessels that do not satisfy the restrictions are allowed to enter and depart from a nearby port from the outer sea area to minimize the time and distance the oil tanker must navigate in the prohibited area. Therefore, such regulation should not be construed as referring to inshore traffic. In this study, the traffic volume of coastal tankers that do not use the approaching channels for specific sea areas near Yeosu and Gwangyang Port was analyzed, and the cargo loads of these ships were investigated. The results of this study should be used to allow tankers to minimize the time and distance of navigation in prohibited areas. According to the survey, 16 vessels, 51.6 % of the 31 vessels using inshore traffic included in the study, were loaded with more than 1,500 tons of cargo. This is not appropriate according to the legislation for oil tanker passage. Therefore, in this study, sea routes have been proposed that connect with the approaching channels of specific sea areas, from the outer sea areas of restricted passages. Regulations have also been proposed for the entry and departure of oil tankers around Yeosu and Gwangyang Port.

A Proposal of Bridge Design Guideline by Analysis of Marine Accident Parameters occurred at Bridges Crossing Navigable Waterways (항만횡단 해상교량의 해양사고 관련 인자 분석을 통한 교량설계안 제안)

  • Park, Young-Soo;Lee, Yun-Sok;Park, Jin-Soo;Cho, Ik-Soon;Lee, Un
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.743-750
    • /
    • 2008
  • Recently Bridges crossing waterway are constructed in navigable waterway, so marine accidents near bridges navigable waterway often occurred bemuse that has affect dangerous element for. This paper analysed the necessary environmental factors to navigate safely near bridges and how to set up the environmental factors. Marine accidents elements occurred near bridges relate to span of bridge, size of navigating ship, length of straight way and traffic volume except mistake of mariners. As results of marine accident parameter analysis, Span of bridge is necessary more than 300m at least based on marine accident's analysis, and in case of more than ship's Length 150m, span of bridge is necessary more than 500m, $3{\sim}4L$(L; Ship's Length). Length of straight way before bridge is necessary more than 8L to minimize the marine accident.