• Title/Summary/Keyword: 통합항법 알고리즘

Search Result 41, Processing Time 0.02 seconds

ASF 보상 방법에 따른 eLoran/GPS 통합항법 알고리즘 성능 개선

  • Song, Se-Pil;Jo, Seong-Han;Choe, Heon-Ho;Kim, Yeong-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.193-195
    • /
    • 2011
  • GPS는 높은 정확도를 갖지만 신호 간섭에 취약하다. 따라서 Loran-C의 정확도를 개선한 eLoran이 GPS의 보조항법 시스템으로 고려되고 있다. 본 논문에서는 eLoran/GPS 통합 항법 알고리즘에서 eLoran의 오차 요소인 ASF를 보상하는 방법에 따른 위치추정 결과의 정확도를 분석한다.

  • PDF

수중 무인항체를 위한 Vision/INS 통합 항법

  • Park, Seul-Gi;Jo, Deuk-Jae;Park, Sang-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.1-3
    • /
    • 2010
  • 수중 무인항체(Autonomous Underwater Vehicle, AUV)를 고정밀, 고위험 임무수행 분야에 이용하기 위해서는 연속적이고 정확한 항법정보를 제공하는 기술이 반드시 필요하다. 특히, 최근에는 항공분야에서 국내외적으로 연속적이고 정확한 항법정보를 제공하기 위하여 여러 가지 센서를 결합한 통합 항법시스템에 관한 연구가 활발하며, GPS나 음향장치를 관성센서와 통합하는 방법이 대표적이다. 하지만 수중 무인항체에 경우는 해수면 노출로 인한 탐사시간 장기화와 음향장치 설치 및 회수의 한계로 인하여 GPS나 음향장치 이외에 센서를 이용한 통합 항법시스템의 필요성이 커지고 있다. 본 논문에서는 자율성이 높으면서, 적은 비용으로 설치가 가능한 영상센서를 이용하여 항법성능을 효과적으로 증대시키는 Vision/INS 통합 항법을 제안한다. 제안한 통합 항법알고리즘은 외부표정요소 직접결정기법을 이용하여 영상 데이터로부터 항체의 위치와 자세를 추정하고, 추정된 결과를 INS의 추정치와 비교한다. 그리고 추정한 위치와 자세오차를 입력으로 칼만필터를 구동하도록 설계하였다. 모의실험을 통해 제안한 방법의 유효성을 확인하였다.

  • PDF

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.

Time Delay Error Analysis and Compensation Method of Integrated Navigation System for Aircraft Store (항공장착물의 전달정렬을 위한 통합항법장치 시간 지연 오차 분석 및 보상 기법)

  • Seo, Byung-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.592-601
    • /
    • 2018
  • The GPS/INS integrated navigation system, which is one of the electronic equipments mounted on military aircraft store, can not directly receive GPS signals by the aircraft wing before the drop, so GPS navigation data is received from the aircraft and used for filter integration, afterwards, the integrated navigation is performed using the GPS information directly received through the antenna. In this case, it is possible to operate the mount in old aircraft without any modification of the aircraft when GPS data is transmitted using wireless. However, the delay occurs while the aircraft navigation data is transmitted to the integrated navigation filter of the aircraft store via wireless, which affects the time synchronization of the GPS measurement and the INS information, affecting the integrated navigation performance. In this paper, an algorithm to analyze and compensate the effect of generation and transmission delay that can occur when implementing GPS/INS integrated navigation system of aircraft store that receives GPS data via wireless.

Development of Monitoring Program Based an Automotive GPS/DR Integrated Navigation System for Lane Departure Warning (차선이탈경보를 위한 차량용 GPS/DR 통합항법시스템 기반의 모니터링 프로그램 개발)

  • Park, Soon-Chul;Chun, Se-Bum;Kim, Jeong-Won;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.791-799
    • /
    • 2010
  • In this paper, integrated navigation algorithm is designed for land transport sector which is needed high accuracy and monitoring program is developed for lane departure warning. High accuracy position information which is possible lane separation is needed for lane departure warning, so position detection algorithm based GPS/DR which combine GPS with dead reckoning is proposed. For the verification of the designed integrated navigation algorithm, we drived to acquire data and showed post-processing experiment results with monitoring program. Vehicle driving movie and aerial photograph in monitoring program is designed to show lane keeping and lane separation.

Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon (도심지역에서의 연도별 다중위성항법 통합성능 예측)

  • Seok, Hyo Jeong;Park, Byung Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • In the paper, we predict the number of multi-GNSS satellites and visible satellites with the navigation satellite launch plans and their nominal orbit parameters. Based on the methodology, the multi-GNSS navigation performance and DOP (Dilution of Precision) variation from 2015 to 2020 were forecasted by the Matlab simulation. To calculate the position using the multi-GNSS constellation, we determined the time-offset between the two different systems. Two different algorithms were considered for the sake of time-offset determination; that of each was applied to system level and user side. Also, the results from two algorithms were compared for evaluating each performance. For the reality, we applied the 3D map information to the simulation, which is expected to contribute for predicting the future navigation performance in urban canyon.

Development of Navigation Computer for Small Satellites Using Integrated GPS/INS (소형위성용 GPS/INS 통합 항법 컴퓨터 개발)

  • Choi, Young-Hoon;Lee, Byung-Hoon;Chnag, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.393-398
    • /
    • 2008
  • This paper suggests a GPS/INS navigation computer architecture that can be applied to small satellites. In order to implement a GPS/INS navigation system on a small satellite, the extreme environment in space such as radiation, micro-gravity, vacuum, etc. must be considered. In addition, a real-time processing ability is required for the GPS/INS navigation system since the formation flying of multiple small satellites is the ultimate goal. The developed navigation electronics utilizes a PowerPC-type MPC860T that has space environment heritage, and a pair of Atmega128s that has been implemented in KAUSAT-2 and has completed the space environment verification tests. The navigation algorithm is designed to work in VxWorks environment, ported in MPC860T.

Integrated SIFT Algorithm with Feature Point Matching Filter for Relative Position Estimation (특징점 정합 필터 결합 SIFT를 이용한 상대 위치 추정)

  • Gwak, Min-Gyu;Sung, Sang-Kyung;Yun, Suk-Chang;Won, Dae-Hee;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.759-766
    • /
    • 2009
  • The purpose of this paper is an image processing algorithm development as a base research achieving performance enhancement of integrated navigation system. We used the SIFT (Scale Invariant Feature Transform) algorithm for image processing, and developed feature point matching filter for rejecting mismatched points. By applying the proposed algorithm, it is obtained better result than other methods of parameter tuning and KLT based feature point tracking. For further study, integration with INS and algorithm optimization for the real-time implementation are under investigation.