• Title/Summary/Keyword: 통합과학교육

Search Result 650, Processing Time 0.021 seconds

Survey on the status of integrated science education in middle school (통합과학교육의 실태조사)

  • Lee, Hack-Dong
    • Journal of The Korean Association For Science Education
    • /
    • v.6 no.2
    • /
    • pp.43-52
    • /
    • 1986
  • It is the purpose at thus survey to get hold at problems in teaching integrated science in middle school. For this purpose, problems and suggestions were collected by questionnaire which were made out by middle school science teachers. Through the analysis of the questionnaire, it was found that the present curriculum of science education in the college of education and the in-service training program were not suitable for training middle school science teacher. Form the results of the analysis, this survey concluded that the curriculum and program mentioned above need improvement as follows. (1) science education curriculum in the college of education should be set up with two part. One is the part that middle school science teachers are trained and the other is the part that high school science teachers are trained. (2) In-service training program should be set off into two kinds. One is the program that middle school science teachers are trained and the other program that high school science teachers are trained.

  • PDF

A New Integrative Approach to Geography Education in the Social Studies Subject - with respect to Replacement of Geographical Contents in the Elementary-leveled Learning - (지리 교과의 통합교육적 접근방안 - 초등 사회과 학습 내용 조직을 중심으로 -)

  • Kang, Kyoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.51-66
    • /
    • 2001
  • The curriculum of integrated social studies is not conceptually established, but various forms pursuing so-called perfect integrated subject have appeared from elementary school to high school. But we cannot find out desirable integration in the elementary school though the apparent goal is to integrate all kinds of social concepts into one unit. The current method of integration has some problems over advantages people initially expected by integration. It is problematic in that students learn fragmental knowledges of geography without capturing the whole geographical concept structure or obtaining their own geographical viewpoint. Therefore, we purpose to reinterpret integration of social studies and reorganize the current textbook into the right direction under the assumption that simple mixture of knowledges is far from our goal of true integration. For this purpose, we suggest a new method for social studies as an integrated subject. Instead of providing knowledges unrelated to each other into one bundle, it helps students to see the real world in his own knowledge framework equipped with geographical viewpoint. The text we claim will show students that geography consists of three key concepts: physical environment, man and environment, and spatial structure. With this text, they will have an easy access to the relationships between key concepts and details, and between geographical concepts and similar concepts from other disciplines. The proposal contributes to both upcoming textbook development and classroom teaching by eliminating problems in the current social studies teaching.

  • PDF

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.

An Exploration of the Associations between the Features of Science Performance Assessments and PCK during High School Integrated Science Lessons (고등학교 통합과학 수행평가 사례를 통해 탐색한 교사의 수행평가 실천 특성과 PCK 사이의 관련성)

  • Kang, Nam-Hwa;Kim, Minji
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.291-305
    • /
    • 2020
  • The purpose of this study is to examine whether and how the features of performance assessments implemented during integrated science classes are related to teachers' PCK. We observed and video recorded four high school teachers' performance assessment practices, interviewed them, and surveyed their PCK. An analysis of the data shows that the teachers' performance assessment practices differed in terms of assessment of process, diagnosis of student learning progress, feedback, degree of classroom interactions, and use of assessment criteria. In particular, the opportunities for students to participate in assessment actively and use of assessment for learning varied across teachers. Also, relational patterns among science teaching orientations, PCK and performance assessment practices were found. When a teacher aimed at teaching for both academic learning and scientific literacy, sophisticated PCK was shown and assessment practices were complex accordingly. When scientific literacy was emphasized PCK highlighted experiential learning and assessments were not clearly distinguished from learning activities. In contrast, when academic achievement was emphasized traditional teaching strategies and assessments were highlighted. Based on these findings a number of topics for professional development are suggested including strategies for students' active engagement in assessment, use and development of specific assessment criteria, strategies for assessing performance qualities, and intuitive assessment competency development. Further research topics are also suggested.

A Case Study of Undergraduate Students majoring in Science/Engineering and Humanities/Social Sciences who Solved the Convergence Problem based on History and Philosophy of Science in Problem-Based Learning Program (문제기반학습(Problem-Based Learning) 프로그램에서 과학사 및 과학철학 기반 융합 문제를 해결한 이공계열과 인문사회계열 대학생들의 사례연구)

  • Lee, Jong-Hyeok;Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.499-510
    • /
    • 2019
  • History and philosophy of science has been consistently emphasized in science education for various purposes. In accordance with the introduction of the 2015 revised curriculum, history of science could be implemented for the curriculum; designing well-organized learning strategies is required. This study examines the case of undergraduate students who solved the convergence problem based on history and philosophy of science in the problem-based learning program. In particular, this study tries to find strategies for integrated education by comparing the problem structuring process and the meaning of problem solving experience of science/engineering and humanities/social sciences students. Participants were three students majoring in science/engineering and humanities/social sciences. Participants constructed and solved their own convergence problems by integrating the domains that were familiar to them into history and philosophy of science. While the process of structuring the problems and the use of history and philosophy of science were similar, there were differences between the science/engineering and humanities/social sciences students' point of view on history and philosophy of science and the other domain which they choose. Moreover, there were differences between the two group's meanings of problem solving experience. Finally, based on the results of this study, history and philosophy in science provided some implications in the context of science education and integrated education.

International Comparison Study on Essential Concepts of Science Curriculum: Focus on the United States, Canada, Australia and England (과학과 교육과정의 핵심 개념 국제 비교 -미국, 캐나다, 호주, 영국을 중심으로-)

  • Kim, Jihyeon;Chung, Are Jun
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.215-223
    • /
    • 2017
  • This study aims to find an effective way to present essential science concepts in national science curriculum through international comparisons. Next Generation Science Standard (US), Ontario Science Curriculum (Canada), Australia Science Curriculum, and British/English Science Curriculum were selected for comparison. In science curriculum documents, these countries used terms such as 'Key ideas,' 'Big ideas,' 'Key concepts,' 'Disciplinary core ideas.' and 'Fundamental concepts' to present essential concepts of science. This study reviewed the characteristics of the meaning, the status, and the role of essential concepts country by country. The result shows essential concepts have been used with different meanings and statutes in each case. Furthermore, various roles were performed through essential concepts in order to organize their science curriculum. From these foreign nation's cases, this study proposes several ways to present essential science concepts based on results. First, interdisciplinary integrated concepts were needed to organize an integrated science curriculum. In science curriculum documents of the United States, Canada, Australia and England, two types of terms were used in order to structuralize an integrated science curriculum. Second, essential concepts should include concepts related with function and value as well as scientific knowledge. Third, essential concepts need to be presented in such a way as to show specific contexts. Therefore, selecting appropriate contents and structure are needed to be able to improve the way to present essential concepts in Korea's educational environment.

An Analysis of Research Trend for Integrated Understanding of Environmental Issues: Focusing on Science Education Research on Carbon Cycle (환경 문제의 통합적 이해를 위한 국내외 연구 동향 분석 -탄소 순환 주제의 과학 교육을 중심으로-)

  • Park, Byung-Yeol;Jeon, Jaedon;Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Issues on climate change we are facing, such as global warming, are very important as it affects our lives directly. To overcome this, efforts to reduce greenhouse gases emissions (e.g., carbon dioxide) are necessary and these efforts should be based on our integrated understanding of carbon cycle. The purpose of this study is to examine the research trend on carbon cycle education and to suggest the value and direction of carbon cycle education for students who will be citizens of the future. We analyzed 52 carbon cycle education related studies collected from academic research databases (RISS, KCI, ERIC, Google Scholar, and others). As a result, we conclude that resources are still limited and more researches on verification and utilization of developed program, development of accurate and comprehensive tools for students' recognition and level assessment, developing educational model or teacher professional development, providing more appropriate curriculum resources, and the use of various topics or materials for carbon cycle education are necessary. Students' comprehensive understanding of the carbon cycle is important to actively react to the changes in the global environment. Therefore, to support such learning opportunities, resources that can be connected to students' daily experiences to improve students' understanding of carbon cycle and replace misconceptions based on the verification of existing programs should be provided in the classroom as well as the curriculum. In addition, sufficient exemplary cases in carbon cycle education including various materials and topics should be provided through professional development to support teachers teaching strategies with carbon cycle.

Theoretical Study of Scientific Symmetry and Its Implications for Science Education (과학적 대칭성에 대한 이론적 고찰 및 과학교육에의 함의)

  • Kyungsuk Bae;Yeon-A Son;Jun-Young Oh
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.13-29
    • /
    • 2023
  • This study aims to provide a theoretical examination of symmetry and its implications for science education. For this purpose, first, we examined the way of thinking of Western science in general through ancient Greek scholars. Second, we divided the perception of symmetry into ancient and modern times. Third, we draw out the implications for science education. The results of this study show that, first, the way of thinking in Western science is 'abstraction', which began with Parmenides and was established by Plato. Second, the ancient perception of symmetry is symmetry as beautiful proportions and harmony based on abstraction, and the modern perception of symmetry is symmetry as an invariant perspective based on abstraction that seeks to find constancy in change. We examined Eratosthenes' experiment to measure the circumference of the earth as an example of ancient symmetry, and Galilean relativity or transformation as examples of modern symmetry. Third, the implications for science education are as follows. Awareness of symmetry can help educate students about the nature of science, as it is a central theme that runs through ancient and modern science. Second, the Eratosthenes' experiment and Galilean relativity or transformations are not represented in the 2022 revised curriculum, but could support understanding of science and key competencies and concepts. Finally, an integrated approach to science education centered on symmetry can have a positive impact on scientific attitudes and interest.

Interview - 김차동 국가과학기술위원회 상임위원

  • Lee, Eun-Jeong
    • The Science & Technology
    • /
    • s.509
    • /
    • pp.4-7
    • /
    • 2011
  • 국가과학기술위원회(국과위)가 출범한 지 6개월이 지났다. 현 정부 출범 후 과학기술부가 교육과학기술부(교과부)로 통합되면서 '과학정책이 실종됐다'는 비판을 받기도 했는데 국과위가 출범해 정부 전체의 연구개발을 총지휘하기로 조직이 바뀐 것이다. 그동안 문제가 됐던 과학정책에서의 '컨트롤 타워' 역할을 국과위가 잘해낼 수 있을지, 김차동 상임위원을 만나 소회와 앞으로의 계획을 들어봤다.

  • PDF

Elementary School Teachers' Conception of the Learning Content of Elementary Science Education Subject Required in the 4th Industrial Revolution Era (4차 산업혁명 시대에 필요한 초등 과학교육학 과목의 학습 내용에 대한 초등 교사의 인식)

  • Na, Jiyeon
    • Journal of Science Education
    • /
    • v.45 no.1
    • /
    • pp.90-104
    • /
    • 2021
  • This study conducted an online survey to understand what elementary school teachers think about the learning contents of elementary science education subjects needed to train elementary science teachers suitable for the era of the 4th Industrial Revolution. The results are as follows: First, there were many elementary school teachers who thought that the current learning content of elementary science education was not suitable for the era of the 4th Industrial Revolution and that it needed to modify the learning content. Many of the teachers said that the learning content of the subject did not include the characteristics of the 4th Industrial Revolution, but also did not reflect the changes of the times and remained in the past. Second, the content that elementary school teachers thought was important in training elementary school teachers suitable for the era of the 4th Industrial Revolution was mainly related to the interests and curiosity of students, and scientific experiments or inquiry. On the contrary, the items that they thought should be deleted or reduced included science learning theory, science teaching/learning model, nature of science, and guidance for gifted children. Third, the contents that elementary school teachers thought needed to be added as learning content of elementary science education subjects were SSI education, science education-related social change and future prediction, advanced science technology, STEAM guidance, and integrated education within the science field. Fourth, in order to train elementary school teachers suitable for the era of the 4th Industrial Revolution, the contents that they thought should be introduced first as learning content of elementary science education subjects were SSI education, integrated education within the science field, STEAM guidance, and core competencies. Other contents that need to be introduced were software education, safety education, and project learning methods.