• Title/Summary/Keyword: 통신 모듈

Search Result 2,810, Processing Time 0.031 seconds

A Performance Improvement Method using Variable Break in Corpus Based Japanese Text-to-Speech System (가변 Break를 이용한 코퍼스 기반 일본어 음성 합성기의 성능 향상 방법)

  • Na, Deok-Su;Min, So-Yeon;Lee, Jong-Seok;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • In text-to-speech systems, the conversion of text into prosodic parameters is necessarily composed of three steps. These are the placement of prosodic boundaries. the determination of segmental durations, and the specification of fundamental frequency contours. Prosodic boundaries. as the most important and basic parameter. affect the estimation of durations and fundamental frequency. Break prediction is an important step in text-to-speech systems as break indices (BIs) have a great influence on how to correctly represent prosodic phrase boundaries, However. an accurate prediction is difficult since BIs are often chosen according to the meaning of a sentence or the reading style of the speaker. In Japanese, the prediction of an accentual phrase boundary (APB) and major phrase boundary (MPB) is particularly difficult. Thus, this paper presents a method to complement the prediction errors of an APB and MPB. First, we define a subtle BI in which it is difficult to decide between an APB and MPB clearly as a variable break (VB), and an explicit BI as a fixed break (FB). The VB is chosen using the classification and regression tree, and multiple prosodic targets in relation to the pith and duration are then generated. Finally. unit-selection is conducted using multiple prosodic targets. In the MOS test result. the original speech scored a 4,99. while proposed method scored a 4.25 and conventional method scored a 4.01. The experimental results show that the proposed method improves the naturalness of synthesized speech.

Implementation of Non-Stringed Guitar Based on Physical Modeling Synthesis (물리적 모델링 합성법에 기반을 둔 줄 없는 기타 구현)

  • Kang, Myeong-Su;Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper describes the non-stringed guitar composed of laser strings, frets, sound synthesis algorithm and a processor. The laser strings that can depict stroke and playing arpeggios comprise laser modules and photo diodes. Frets are implemented by voltage divider. The guitar body does not need to implement physically because commuted waveguide synthesis is used. The proposed frets enable; players to represent all of chords by the chord glove as well as guitar solo. Sliding, hammering-on and pulling-off sounds are synthesized by using parameters from the voltage divider. Because the pitch shifting corresponds to the time-varying propagation speed in the digital waveguide model, the proposed model can synthesize vibrato as well. After transformation of signals from the laser strings and frets into parameters for synthesis algorithm, the digital signal processor, TMS320F2812, performs the real-time synthesis algorithm and communicates with the DAC. The demonstration movieclip available via the Internet shows one to play a song, 'Arirang', synthesized by proposed algorithm and interfaces in real-time. Consequently, we can conclude that the proposed synthesis algorithm is efficient in guitar solo and there is no problem to play the non-stringed guitar in real-time.

Exercise Posture Calibration System using Pressure and Acceleration Sensors (압력 및 가속도 센서를 활용한 운동 자세 교정 시스템 )

  • Won-Ki Cho;Ye-Ram Park;Sang-Hyeon Park;Young-Min Song;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.781-790
    • /
    • 2024
  • As modern people's interest in exercise and health increases, the demand for exercise-related information and devices is increasing, and exercising in the wrong posture can lead to body imbalance and injury. Therefore, in this study, the purpose of this study is to correct the posture for health promotion and injury prevention through the correct exercise posture of users. It was developed using Arduino Uno R3, a pressure sensor, and an acceleration sensor as the main memory device of the system. The pressure sensor was used to determine the squat posture, and the acceleration sensor was used to determine three types of gait: normal step, nasolabial step, and saddle step. Data is transmitted to a smartphone through a Bluetooth module and displayed on an app to guide the user in the correct exercise posture. The gait was determined based on the 20˚ angle at which the foot was opened, and the correct squat posture was compared with the ratio of the pressure sensor values of the forefoot and hindfoot based on the data of the skilled person. Therefore, based on an experiment with about 90% accuracy when determining gait and 95% accuracy based on a 7:3 ratio of pressure sensor values in squat posture, a system was established to guide users to exercise in the correct posture by checking in real time through a smartphone application and correcting exercise in the wrong posture.

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

Electronic Roll Book using Electronic Bracelet.Child Safe-Guarding Device System (전자 팔찌를 이용한 전자 출석부.어린이 보호 장치 시스템)

  • Moon, Seung-Jin;Kim, Tae-Nam;Kim, Pan-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.143-155
    • /
    • 2011
  • Lately electronic tagging policy for the sexual offenders was introduced in order to reduce and prevent sexual offences. However, most sexual offences against children happening these days are committed by the tagged offenders whose identities have been released. So, for the crime prevention, we need measures with which we could minimize the suffers more promptly and actively. This paper suggests a new system to relieve the sexual abuse related anxiety of the children and solve the problems that electronic bracelet has. Existing bracelets are only worn by serious criminals, and it's only for risk management and positioning, there is no way to protect the children who are the potential victims of sexual abuse and there actually happened some cases. So we suggest also letting the students(children) wear the LBS(Location Based Service) and USN(Ubiquitous Sensor Network) technology based electronic bracelets to monitor and figure out dangerous situations intelligently, so that we could prevent sexual offences against children beforehand, and while a crime is happening, we could judge the situation of the crime intelligently and take swift action to minimize the suffer. And by checking students' attendance and position, guardians could know where their children are in real time and could protect the children from not only sexual offences but also violent crimes against children like kidnapping. The overall system is like follows : RFID Tag for children monitors the approach of offenders. While an offender's RFID tag is approaching, it will transmit the situation and position as the first warning message to the control center and the guardians. When the offender is going far away, it turns to monitoring mode, and if the tag of the child or the offender is taken off or the child and offender stay at one position for 3~5 minutes or longer, then it will consider this as a dangerous situation, then transmit the emergency situations and position as the second warning message to the control center and the guardians, and ask for the dispatch of police to prevent the crime at the initial stage. The RFID module of criminals' electronic bracelets is RFID TAG, and the RFID module for the children is RFID receiver(reader), so wherever the offenders are, if an offender is at a place within 20m from a child, RFID module for children will transmit the situation every certain periods to the control center by the automatic response of the receiver. As for the positioning module, outdoors GPS or mobile communications module(CELL module)is used and UWB, WI-FI based module is used indoors. The sensor is set under the purpose of making it possible to measure the position coordinates even indoors, so that one could send his real time situation and position to the server of central control center. By using the RFID electronic roll book system of educational institutions and safety system installed at home, children's position and situation can be checked. When the child leaves for school, attendance can be checked through the electronic roll book, and when school is over the information is sent to the guardians. And using RFID access control turnstiles installed at the apartment or entrance of the house, the arrival of the children could be checked and the information is transmitted to the guardians. If the student is absent or didn't arrive at home, the information of the child is sent to the central control center from the electronic roll book or access control turnstiles, and look for the position of the child's electronic bracelet using GPS or mobile communications module, then send the information to the guardians and teacher so that they could report to the police immediately if necessary. Central management and control system is built under the purpose of monitoring dangerous situations and guardians' checking. It saves the warning and pattern data to figure out the areas with dangerous situation, and could help introduce crime prevention systems like CCTV with the highest priority. And by DB establishment personal data could be saved, the frequency of first and second warnings made, the terminal ID of the specific child and offender, warning made position, situation (like approaching, taken off of the electronic bracelet, same position for a certain time) and so on could be recorded, and the data is going to be used for preventing crimes. Even though we've already introduced electronic tagging to prevent recurrence of child sexual offences, but the crimes continuously occur. So I suggest this system to prevent crimes beforehand concerning the children's safety. If we make electronic bracelets easy to use and carry, and set the price reasonably so that many children can use, then lots of criminals could be prevented and we can protect the children easily. By preventing criminals before happening, it is going to be a helpful system for our safe life.

Smart Browser based on Semantic Web using RFID Technology (RFID 기술을 이용한 시맨틱 웹 기반 스마트 브라우저)

  • Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.37-44
    • /
    • 2008
  • Data entered into RFID tags are used for saving costs and enhancing competitiveness in the development of applications in various industrial areas. RFID readers perform the identification and search of hundreds of objects, which are tags. RFID technology that identifies objects on request of dynamic linking and tracking is composed of application components supporting information infrastructure. Despite their many advantages, existing applications, which do not consider elements related to real.time data communication among remote RFID devices, cannot support connections among heterogeneous devices effectively. As different network devices are installed in applications separately and go through different query analysis processes, there happen the delays of monitoring or errors in data conversion. The present study implements a RFID database handling system in semantic Web environment for integrated management of information extracted from RFID tags regardless of application. Users’ RFID tags are identified by a RFID reader mounted on an application, and the data are sent to the RFID database processing system, and then the process converts the information into a semantic Web language. Data transmitted on the standardized semantic Web base are translated by a smart browser and displayed on the screen. The use of a semantic Web language enables reasoning on meaningful relations and this, in turn, makes it easy to expand the functions by adding modules.

Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station (위성항법 지상국 감시제어시스템 예비설계)

  • Jeong, Seong-Kyun;Lee, Jae-Eun;Park, Han-Earl;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.227-238
    • /
    • 2008
  • GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.