• Title/Summary/Keyword: 통계적특징

Search Result 600, Processing Time 0.036 seconds

The Efficient Feature Extraction of Handwritten Numerals in GLVQ Clustering Network (GLVQ클러스터링을 위한 필기체 숫자의 효율적인 특징 추출 방법)

  • Jeon, Jong-Won;Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.995-1001
    • /
    • 1995
  • The structure of a typical pattern recognition consists a pre-processing, a feature extraction(algorithm) and classification or recognition. In classification, when widely varying patterns exist in same category, we need the clustering which organize the similar patterns. Clustering algorithm is two approaches. Firs, statistical approaches which are k-means, ISODATA algorithm. Second, neural network approach which is T. Kohonen's LVQ(Learning Vector Quantization). Nikhil R. Palet al proposed the GLVQ(Generalized LVQ, 1993). This paper suggest the efficient feature extraction methods of handwritten numerals in GLVQ clustering network. We use the handwritten numeral data from 21's authors(ie, 200 patterns) and compare the proportion of misclassified patterns for each feature extraction methods. As results, when we use the projection combination method, the classification ratio is 98.5%.

  • PDF

The Multi Knowledge-based Image Retrieval Technology for An Automobile Head Lamp Retrieval (자동차 전조등 검색을 위한 다중지식기반의 영상검색 기법)

  • 이병일;손병환;홍성욱;손성건;최흥국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.27-35
    • /
    • 2002
  • A knowledge-based image retrieval technique is image searching methods using some features from the queried image. The materials in this study are automobile head lamps. The input data is composed of characters and images which have various pattern. The numbers, special symbols, and general letters are under the category of the character. The image informations are made up of the distribution of pixel data, statistical analysis, and state of pattern which are useful for the knowledge data. In this paper, we implemented a retrieval system for the scientific crime detection at traffic accident using the proposed multi knowledge-based image retrieval technique. The values for the multi knowledge-based image features were extracted from color and gray scale each. With this 22 features, we improved the retrieval efficiency about the color information and pattern information. Visual basic, crystal report and MS access DB were used for this application. We anticipate the efficient scientific detection for the traffic accident and the tracking of suspicious vehicle.

  • PDF

Experimental Verification of the Versatility of SPAM-based Image Steganalysis (SPAM 기반 영상 스테그아날리시스의 범용성에 대한 실험적 검증)

  • Kim, Jaeyoung;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.526-535
    • /
    • 2018
  • Many steganography algorithms have been studied, and steganalysis for detecting stego images which steganography is applied to has also been studied in parallel. Especially, in the case of the image steganalysis, the features such as ALE, SPAM, and SRMQ are extracted from the statistical characteristics of the image, and stego images are classified by learning the classifier using various machine learning algorithms. However, these studies did not consider the effect of image size, aspect ratio, or message-embedding rate, and thus the features might not function normally for images with conditions different from those used in the their studies. In this paper, we analyze the classification rate of the SPAM-based image stegnalysis against variety image sizes aspect ratios and message-embedding rates and verify its versatility.

Feature Analysis Based on Beta Distribution Model for Shaving Tool Condition Monitoring (세이빙공구 상태 감시를 위한 베타분포모델에 기반한 특징 해석)

  • Choe, Deok-Ki;Kim, Seong-Jun;Oh, Young-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Tool condition monitoring (TCM) is crucial for improvement of productivity in manufacturing process. However, TCM techniques have not been applied to monitor tool failure in an industrial gear shaving application. Therefore, this work studied a statistical TCM method for monitoring gear shaving tool condition. The method modeled the vibration signal of the shaving process using beta probability distribution in order to extract the effective features for TCM. Modeling includes rectifying for converting a bi-modal distribution into a unimodal distribution, estimating the parameters of beta probability distribution based on method of moments. The performance of features obtained from the proposed method was evaluated and discussed.

Text Region Verification in Natural Scene Images using Multi-resolution Wavelet Transform and Support Vector Machine (다해상도 웨이블릿 변환과 써포트 벡터 머신을 이용한 자연영상에서의 문자 영역 검증)

  • Bae Kyungsook;Choi Youngwoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.667-674
    • /
    • 2004
  • Extraction of texts from images is a fundamental and important problem to understand the images. This paper suggests a text region verification method by statistical means of stroke features of the characters. The method extracts 36 dimensional features from $16\times16$sized text and non-text images using wavelet transform - these 36 dimensional features express stroke and direction of characters - and select 12 sub-features out of 36 dimensional features which yield adequate separation between classes. After selecting the features, SVM trains the selected features. For the verification of the text region, each $16\times16$image block is scanned and classified as text or non-text. Then, the text region is finally decided as text region or non-text region. The proposed method is able to verify text regions which can hardly be distin guished.

Emotion Recognition Using Color and Pattern in Textile Images (컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템)

  • Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.154-161
    • /
    • 2008
  • In this paper, a novel method is proposed using color and pattern information for recognizing some emotions included in a fertile. Here we use 10 Kobayashi emotion to represent emotions. - { romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modem } The proposed system is composed of feature extraction and classification. To transform the subjective emotions as physical visual features, we extract representative colors and Patterns from textile. Here, the representative color prototypes are extracted by color quantization method, and patterns exacted by wavelet transform followed by statistical analysis. These exacted features are given as input to the neural network (NN)-based classifiers, which decides whether or not a textile had the corresponding emotion. When assessing the effectiveness of the proposed system with 389 textiles collected from various application domains such as interior, fashion, and artificial ones. The results showed that the proposed method has the precision of 100% and the recall of 99%, thereby it can be used in various textile industries.

Real-Time Place Recognition for Augmented Mobile Information Systems (이동형 정보 증강 시스템을 위한 실시간 장소 인식)

  • Oh, Su-Jin;Nam, Yang-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.477-481
    • /
    • 2008
  • Place recognition is necessary for a mobile user to be provided with place-dependent information. This paper proposes real-time video based place recognition system that identifies users' current place while moving in the building. As for the feature extraction of a scene, there have been existing methods based on global feature analysis that has drawback of sensitive-ness for the case of partial occlusion and noises. There have also been local feature based methods that usually attempted object recognition which seemed hard to be applied in real-time system because of high computational cost. On the other hand, researches using statistical methods such as HMM(hidden Markov models) or bayesian networks have been used to derive place recognition result from the feature data. The former is, however, not practical because it requires huge amounts of efforts to gather the training data while the latter usually depends on object recognition only. This paper proposes a combined approach of global and local feature analysis for feature extraction to complement both approaches' drawbacks. The proposed method is applied to a mobile information system and shows real-time performance with competitive recognition result.

A product review summarization system using a scoring of features (상품특징별 점수화를 이용한 상품리뷰요약 시스템의 설계 및 구현)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Proceedings of the Korea Database Society Conference
    • /
    • 2008.05a
    • /
    • pp.339-347
    • /
    • 2008
  • As a number of product information is increasing in online markets, customers can purchase products with no spatial and time problems. However, in case of an online market, since customers can't see products directly, others' reviews make a big influence to customers. Meanwhile, it is a burden to read all reviews about some products. Therefore, we need to provide refined information to customers as summarizing whole product reviews. In this paper, we explain about the product review summarization system which can provide to customers as show evaluation scores of product features. Natural Language Processing skills and computational statistics are utilized for summarization. Customers can get chances to buy a feasible product that he wants to get through this system. Moreover, Enterprises can find out the needs of customers deeply.

  • PDF

Moving Object Classification through Fusion of Shape and Motion Information (형상 정보와 모션 정보 융합을 통한 움직이는 물체 인식)

  • Kim Jung-Ho;Ko Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.38-47
    • /
    • 2006
  • Conventional classification method uses a single classifier based on shape or motion feature. However this method exhibits a weakness if naively used since the classification performance is highly sensitive to the accuracy of moving region to be detected. The detection accuracy, in turn, depends on the condition of the image background. In this paper, we propose to resolve the drawback and thus strengthen the classification reliability by employing a Bayesian decision fusion and by optimally combining the decisions of three classifiers. The first classifier is based on shape information obtained from Fourier descriptors while the second is based on the shape information obtained from image gradients. The third classifier uses motion information. Our experimental results on the classification Performance of human and vehicle with a static camera in various directions confirm a significant improvement and indicate the superiority of the proposed decision fusion method compared to the conventional Majority Voting and Weight Average Score approaches.

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.