• Title/Summary/Keyword: 통계예측모델

Search Result 545, Processing Time 0.032 seconds

Analysis of the Effect of Soil Depth on Landslide Risk Assessment (산사태 조사를 통한 토층심도가 산사태 발생 위험성에 미치는 영향 분석)

  • Kim, Man-Il;Kim, Namgyun;Kwak, Jaehwan;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.327-338
    • /
    • 2022
  • This study aims to empirically and statistically predict soil depths across areas affected by landslides. Using soil depth measurements from a landslide area in Korea, two sets of soil depths are calculated using a Z-model based on terrain elevation and a probabilistic statistical model. Both sets of calculation results are applied to derive landslide risk using the saturated infiltration depth ratio of the soil layer. This facilitates analysis of the infiltration of rainfall into soil layers for a rainfall event. In comparison with the probabilistic statistical model, the Z-model yields soil depths that are closer to measured values in the study area. Landslide risk assessment in the study area based on soil depth predictions from the two models shows that the percentage of first-grade landslide risk assessed using soil depths from the probabilistic statistical model is 2.5 times that calculated using soil depths from the Z-model. This shows that soil depths directly affect landslide risk assessment; therefore, the acquisition and application of local soil depth data are crucial to landslide risk analysis.

요인분석을 이용한 대체방법

  • Lee, Jae-Gap;Lee, U-Ri;Jeong, Jae-Gu;Lee, Sang-Eun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.143-148
    • /
    • 2003
  • 표본조사에서 발생되는 무응답에 대한 대체법은 매우 다양하게 연구 되고 있다. 특히 모형을 기반으로 하는 회귀 대체법은 매우 활용도가 높다. 이 때 일반적으로 종속변수가 결측값의 변수가 되며 독립변수는 주어지게 된다. 주어지 주어진 종속변수와 독립변수의 값을 이용하여 모델을 설정하고 그에 따라 결측값을 예측하여 대체하게 된다. 이 때 예측값 즉 결측값을 구하는 과정에서 독립변수 값 자체에도 결측값이 생기게 된다는 것이다. 이때 여러 가지 방법으로 독립변수의 결측값을 대체하고 모형을 활용할 수 있다. 그러나 이 연구에서는 독립변수들을 같은 특성끼리 그룹화 시키는 요인분석(factor analysis)을 이용하여 독립변수의 결측값에따른 예측된 결측값의 변동을 최소화 하고자했다.

  • PDF

신경망 모형의 초기가중치 최적화 방법에 관한 연구

  • Jo, Yong-Jun;Lee, Yong-Gu
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.19-24
    • /
    • 2003
  • 신경망은 적용 다양성과 제약조건의 최소성, 강력한 예측성, 범용성, 근사성 등 많은 장점을 지니고 있으나 초기 가중치의 할당에 따라 모델 생성의 Performance와 예측의 결과가 달라지게 되는 단점을 지니고 있다. 이런 신경망의 초기 가중치에 따른 단점을 보안하기 위해 통계적 알고리즘의 접목을 통해 Hybrid된 신경망 보완 알고리즘을 제시하고자 하였다. 논문을 위한 기본 가정으로 신경망의 가장 기본인 SLP 알고리즘을 바탕으로 활성함수에 가장 일반적으로 사용되는 Sigmoid 활성함수를 이용하였을 때, 초기 가중치로 기존의 임의 난수 생성 방식이 아닌 통계적 로지스틱 회귀분석의 계수값(mle)을 제시하여 이를 초기치로 사용한 경우와 그렇지 않은 경우의 예측 정확성과 수렴의 Performance정도를 비교하여 가장 효과적인 초기치 방법을 제시하고자 하였다.

  • PDF

Comparison of Methods in the Identification of Land Slide Prone Areas using GIS (지리정보시스템(GIS)을 이용한 사면붕괴지역 예측방법 연구 및 비교)

  • 장훈;윤완석;신동준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.99-105
    • /
    • 2004
  • 지리정보시스템을 이용한 사면붕괴 연구는 국내외 많은 연구논문과 보고서를 통하여 보고되어 왔다. 반면, 지리정보시스템을 이용한 연구는 현재 다수의 학자들에 의하여 발표되고 있으나, 그 결과에 대한 비교와 국내 실효성에 대하여 언급한 논문은 다소 미흡하다. 본 논문에서는 국내 자료의 실용가능성을 감안하여 사면붕괴지역 가능성예측 산정 모델 중 두 가지 방법, 이변량 통계분석과 결정론적 분석을 통하여 동일지역에 적용하여 그 결과를 비교하였다. 선정된 대상지역은 2002년 태풍 '루사'로 인하여 피해가 규모가 큰 강원도 강릉시이고, 두 모델을 이 지역에 적용하였다. 결과 비교는 동일지역에 동일 자료를 사용하더라도 모델에 따라 발생가능성이 높은 지역이 다소 차이를 보였으며, 모델 또한 자료의 질적, 양적인 성질에 따라 크게 영향을 받는 것이 밝혀졌다.는 것이 밝혀졌다.

  • PDF

Developments of Greenhouse Gas Generation Models and Estimation Method of Their Parameters for Solid Waste Landfills (폐기물매립지에서의 온실가스 발생량 예측 모델 및 변수 산정방법 개발)

  • Park, Jin-Kyu;Kang, Jeong-Hee;Ban, Jong-Ki;Lee, Nam-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.399-406
    • /
    • 2012
  • The objective of this research is to develop greenhouse gas generation models and estimation method of their parameters for solid waste landfills. Two models obtained by differentiating the Modified Gompertz and Logistic models were employed to evaluate two parameters of a first-order decay model, methane generation potential ($L_0$) and methane generation rate constant (k). The parameters were determined by the statistical comparison of predicted gas generation rate data using the two models and actual landfill gas collection data. The values of r-square obtained from regression analysis between two data showed that one model by differentiating the Modified Gompetz was 0.92 and the other model by differentiating the Logistic was 0.94. From this result, the estimation methods showed that $L_0$ and k values can be determined by regression analysis if landfill gas collection data are available. Also, new models based on two models obtained by differentiating the Modified Gompertz and Logistic models were developed to predict greenhouse gas generation from solid waste landfills that actual landfill generation data could not be available. They showed better prediction than LandGEM model. Frequency distribution of the ratio of Qcs (LFG collection system) to Q (prediction value) was used to evaluate the accuracy of the models. The new models showed higher accuracy than LandGEM model. Thus, it is concluded that the models developed in this research are suitable for the prediction of greenhouse gas generation from solid waste landfills.

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

Demand Estimation Methodology for a New Air Route (신규 항공노선에 대한 수요 예측 모델 연구)

  • Choi, Jong Haea;Yoo, Kwang Yui;Lee, Sang Yong
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • A network connectivity has been regarded as a key element to strengthen a business competitive power in the aviation industry, so many airport authorities try to attract the new airlines and scheme out new air routes. With this trend, a study for an induced travel demand estimation methodology is needed. This study introduces a demand estimation method, especially for a new air route to a promising destination. With the results of previous studies, the derived demand is classified into four types - Local, Beyond, Behind and Bridge. The explanatory variables are established for each type of demand and the main independent variables are composed of distance, ratio of detour, and relative capacity compared with other airports. The equations using such variables and statistically significant coefficients are suggested as the model to make an estimation of derived demand for a new route. Therefore this study will be expected to take an initial step for all related parties to be involved more deeply into developing new air routes to enhance network connectivity.

Machine Learning for Predicting Entrepreneurial Innovativeness (기계학습을 이용한 기업가적 혁신성 예측 모델에 관한 연구)

  • Chung, Doo Hee;Yun, Jin Seop;Yang, Sung Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.73-86
    • /
    • 2021
  • The primary purpose of this paper is to explore the advanced models that predict entrepreneurial innovativeness most accurately. For the first time in the field of entrepreneurship research, it presents a model that predicts entrepreneurial innovativeness based on machine learning corresponding to data scientific approaches. It uses 22,099 the Global Entrepreneurship Monitor (GEM) data from 62 countries to build predictive models. Based on the data set consisting of 27 explanatory variables, it builds predictive models that are traditional statistical methods such as multiple regression analysis and machine learning models such as regression tree, random forest, XG boost, and artificial neural networks. Then, it compares the performance of each model. It uses indicators such as root mean square error (RMSE), mean analysis error (MAE) and correlation to evaluate the performance of the model. The analysis of result is that all five machine learning models perform better than traditional methods, while the best predictive performance model was XG boost. In predicting it through XG boost, the variables with high contribution are entrepreneurial opportunities and cross-term variables of market expansion, which indicates that the type of entrepreneur who wants to acquire opportunities in new markets exhibits high innovativeness.

Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method (인공신경망 기법을 이용한 태풍 강도 및 진로 예측)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.294-304
    • /
    • 2009
  • A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.

Particulate Matter Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 예측)

  • Cho, Kyoung-woo;Jung, Yong-jin;Kang, Chul-gyu;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.620-622
    • /
    • 2018
  • The need for particulate matter prediction algorithms has increased as social interest in the effects of human on particulate matter increased. Many studies have proposed statistical modelling and machine learning techniques based prediction models using weather data, but it is difficult to accurately set the environment and detailed conditions of the models. In addition, there is a need to design a new prediction model for missing data in domestic weather monitoring station. In this paper, fine dust prediction is performed using multi-layer perceptron network as a previous study for particulate matter prediction. For this purpose, a prediction model is designed based on weather data of three monitoring station and the suitability of the algorithm for particulate matter prediction is evaluated through comparison with actual data.

  • PDF