• Title/Summary/Keyword: 토양amendment

Search Result 228, Processing Time 0.15 seconds

Effect of Quartz Porphyry on Growth of Creeping Bentgrass (Agrostis stolonifera) and Soil Bacterial Community Structures (맥반석처리가 골프장 잔디의 생육과 토양미생물의 군집구조에 미치는 영향)

  • Koh, Sung-Cheol;Choi, Jung-Hye;Kim, Byung-Hyuk;Kim, Sang-Eun
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • Recently there are difficulties in management of golf courses because of an ever increasing demand for golf as a leisure sports. Hence natural minerals as an amendment could be applied to improve and manage the physicochemical properties of the golf course soils in an environment-friendly way. In this study, quartz porphyry, which has been shown to be a good soil amendment for crop production, was tested for its effect on physicochemical properties of the golf course soil, growth of creeping bentgrass (Agrostis stolonifera) and changes of soil microbial communities in the soil. In general, amendment of 20% quartz porphyry into the soil turned out to be most effective in enhancing a proper growth of the grass leaves and roots. DGGE profile data showed that eubacterial species richness was also the highest at this level of the mineral treatment in which Actinobacteria and ${\alpha}$-Proteobacteria were the dominant phyla. This appeared to be attributed to a low level of soluble organic matter content and decreased concentration of cations such as $Ca^{2+}$, $Mg^{2+}$, and $K^+$.

Growth of Creeping Bentgrass on Bottom Ash and Dredged up Sand with Four Organic Matter Amendment Rates Under Saline Irrigation Condition (염해 조건에서 유기물이 첨가된 준설모래와 석탄회 토양이 크리핑 벤트그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.241-252
    • /
    • 2009
  • This study was carried out to check the possibility of substituting bottom ash from the Seosan power plant for sand as growing media for creeping bentgrass (Agrostis stolonifera L.) under saline irrigation condition. Characteristics of growing media were evaluated by using column and leaching method. Creeping bentgrass cv. Pen-A1 was grown in pots with dredged up sand (DS) and bottom ash (BA) media those were amended using 1%, 2%, and 3 % OM rates in a green house. The plants were irrigated with 1.5 $dSm^{-1}$ saline water. Results showed that visual quality, plant height and shoot dry weight from DS treatment were higher than those of BA treatment. Even though BA contained more salts, repeated leaching could decrease ECe efficiently. In case of no OM amendment, the visual quality, plant height and shoot dry weight were similar between in BA and DS. Amendment of 2% OM increased the height of creeping bentgrass in DS, while decreased the plant growth in BA.

Changes of Soil Microbial Phospholipid Fatty Acids as Affected by Red Pepper Cultivation and Compost Amendment (고추재배지에서 퇴비시용에 따른 토양 미생물의 인지질지방산 변화)

  • Park, Kee-Choon;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.194-199
    • /
    • 2010
  • Compost as a soil amendment is of importance in enhancing the soil chemical and microbial qualities; however, soil microbial community can vary depending on the composition, and the amount of compost applied to plant in the soil. Responses of soil microbial properties to compost applications with 0, 30, and 60 Mg $ha^{-1}$ were investigated in silt loam soils where red pepper(Capsicum annuum L.) was mainly cultivated in Yeongyang, Gyeongbuk, Korea. The analysis of phospholipid fatty acids (PLFAs) extracted from soil showed that compost amounts significantly increased PLFAs representing as bacteria, fungi, and VAM-fungi as well as the ratio of fungi/bacteria, and monounsaturated/saturated PLFAs. Increasing the amount of compost significantly increased Gram-/Gram+ PLFAs' ratio, but significantly decreased monounsaturated/saturated PLFAs' ratio. Therefore, this result shows that compost would vary to a limited extent the microbial community in red pepper field. However, increase in compost application would change the subgroup structure of microbial community only.

Influence of Some Pollutants and Fertilizers on Degradation of Oxadixyl in Soil (몇 가지 오염물질과 비료의 처리가 살균제 Oxadixyl의 토양중 분해에 미치는 영향)

  • Moon, Young-Hee;Kim, Yong-Hwi;Kim, Young-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.341-346
    • /
    • 1997
  • The degradation of fungicide oxadixyl in soil amended with manure, chemical fertilizers, heavy metals and detergent was studied. The degradation of oxadixyl in the soil was slow, but became to be fast after the lag phase of about 14 days. The half-life was 10.5 days. The degradation rate was accelerated largely by the amendment of manure. Potassium also promoted the degradation rate but nitrogen and phosphate did not. The heavy metals inhibited the degradation rate, in order of Ni, Cd, Cr, Cu, and Zn. The degradation rate was declined greatly with the addition of synthetic detergent. The microbial biomass and the respiration rate in the soil were increased by the amendment of manure and chemical fertilizers, but decreased by the addition of heavy metals and cleaner. The degradation rate of oxadixyl was positively correlated with the microbial biomass and the respiration rate.

  • PDF

Development of Elemental Technology for the Revitalization of Heavy Metal Contaminated Soil Remediated by Soil Washing (중금속 오염 토양의 토양세척 정화 후 토양 건강성 회복을 위한 요소 기술 개발)

  • Seung-Hyun Lee;Jong-Hwan Lee;Woo-Chun Lee;Sang-Woo Lee;Soon-Oh Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.36-50
    • /
    • 2023
  • Soil health can deteriorate through both contamination and remediation. Accordingly, revitalization processes are needed to reuse or recycle the remediated soil. The study was conducted to assess the changes in soil health parameters of heavy metals-contaminated soil during soil washing process. In addition, unit processes were proposed to improve the quality of the remediated soil relevant to its reclamation purposes, such as agricultural and forest lands. A total of 21 indicators were used to determine whether the soil health was degraded or recovered. The performance of 6 amendments in improving soil health was quantitatively evaluated according to their dosage and application duration. Finally, the experimental results were assessed by simple regression analyses to determine the statistical significance and relative performance of each amendment. The results indicated that 18 health indicators out of 21 deteriorated through the soil washing process. Based on the results, it is recommended that several effective amendments be complementarily combined and applied in real applications because use of single amendment does not likely improve the quality of remediated soils.

Long-term Application Effects of Soil Amendments on Yield and Soil Properties in Paddy (논토양에서 토양개량제 장기연용에 따른 벼의 생육 및 토양특성 평가)

  • Kwon, Soon-Ik;Lee, Yun-Hae;Hwang, Hyun-Young;Kim, Sung-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • This research evaluated the long-term application effects of different soil amendments on yield, dissolved organic carbon, nitrogen and soil organic carbon stock in rice paddy. The experiment consisted of four different fertilizations; Inorganic fertilization (NPK), NPK+Lime (NPKL), NPK+Silicate (NPKS), NPK+Compost (NPKC). There was no significant difference in rice yield between the treatment groups in 1995, but the rice yields in the NPKL and NPKC treatments in 2019 increased by 4.3% and 14.3% compared to NPK. In terms of soil properties, the pH of NPKS(6.7) and NPKL(6.4) in 2019 increased the most compared to the soil pH before experiment(5.2). The organic matter(OM) content from NPKC treatment increased upto 34 and 27 g kg-1 in year of 1995 and 2019, respectively, compared to before the test. In NPKS and NPKL treatment, labile carbon and nitrogen content, used as a soil quality indicator, increased by 1.1-1.9 times over the control. From these result, it is suggested that type and application rate of soil amendment should be determined based on the soil analysis before cultivation for sustainable agricultural environment and productivity.

Effects of Soil Organic Amendment as Plant Growing Media Component for Restoration of Planting Ground (식재기반 복원을 위한 유기질계 토양개량재의 효용성)

  • Ju, Jin-Hee;In, Da-Young;Kim, Won-Tae;Yoon, Young-Han;Choi, Eun-Young
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1363-1370
    • /
    • 2015
  • This study was aimed to determine effects of soil organic amendment as plant growing media component on restoration of planting ground. The changes of soil physical and chemical properties and germination and growth of kentucky bluegrass (Poa pratensis L.) were investigated. For treatments, soil was excavated at depth of 0-50 cm (referred as $S_1$) and at depth of 50-100 cm (referred as $S_2$). Then the half amount of $S_1$ soil was mixed with the soil organic amendment (coir dust 40% (v/v), bottom ash 25%, leaf mold 25%, vermiculite 5%, carbonized rice hull 5%) at a rate of 6% (v/v) (referred as $S_1CC$) and also the half amount of $S_2$ soil was mixed with the soil organic amendment at a rate of 6% (v/v) (referred as $S_2CC$) on pot in a 16 cm diameter and 14 cm height. The experiment was replicated 3 times with 3 pots per replication in randomized block design, and 100 seeds were planted per pot. In results, there was no significant difference in soil pH among the treatments with a slight decrease in soil hydraulic conductivity. However, in the $S_1CC$ treatment, positive increases in soil chemical properties, including electrical conductivity, organic matter, phosphoric acid, total nitrogen, exchangeable cation, and cation exchange capacity. Also, the germination rate, plant height, and number of leaves were higher in the $S_1CC$ treatment than those in other treatments. These results suggest that the addition of organic amendment to the soil at depth of 0-50 cm might be proper for restoring planting ground.

Effects of Several Amendment Materials on Salt Accumulation and Kentucky Bluegrass (Poa pratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류 집적과 켄터키 블루그래스(Poa pratensis L.)의 생육)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2011
  • The purpose of this study was to find soil-amendment materials those support the growth of Kentucky bluegrass and reduce salt accumulation at the sand based growing media in saline conditions. Rootzone profile in columns consisted of 20 cm of top soil, 20 cm coarse sand as capillary rise interruption layer and 10 cm reclaimed paddy soil as the base of the profile. Top soils were mixtures of dredged sand (DS) and amendment with compositions of 90% sand + 10% peat moss (SP), 80% sand + 10% soil + 10% bottom ash (SSoBa), 80% sand + 20% soil (SSo), 90% sand + 5% peat + 5% zeolite (SPZ), and 80% sand + 20% bottom ash (SBa). The top soil mixtures of DS and amendments were treated with and without gypsum (Gp). The columns were soaked into 5 cm depth saline water reservoir with the salinity level of $3-5dSm^{-1}$. Irrigation of $2dSm^{-1}$ saline water with rate of $5.7mm\;day^{-1}$ was applied by 3 day interval. Application of zeolite decreased SAR, application of gypsum decreased ECe of the sand amended by peat + zeolite and decreased the SAR of sand amended by bottom ash. The SP and SSoGp resulted in higher clipping dry weight of Kentucky bluegrass. The SSoGp and SPZGp showed longer root lengths. The SP and SBaGp showed higher visual quality. Addition of gypsum to soil and bottom ash treatments resulted in the increased shoot growth, whereas additional gypsum to the treatments of peat, soil and zeolite increased the root growth of Kentucky bluegrass.

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.

Transition of Lead from Agricultural Paddy Soil Amended with Lime to Rice Plant after Bench-scale In-situ Washing with FeCl3 (납 오염 논토양의 원위치 세척을 위한 FeCl3의 Bench-scale 적용성 평가: 소석회를 이용한 토양산도 개선 및 납의 벼 전이특성)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Chang, Yoon-Young;Yang, Jae-Kyu;Moon, Deok Hyun;Choi, Yulim;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.74-84
    • /
    • 2018
  • Pot experiments were conducted to assess the applicability of ferric chloride ($FeCl_3$) as a washing agent for laboratory scale in-situ soil washing of paddy soil contaminated with Pb. During the monitoring period for nearly 90 days, the concentrations of Fe and Mn in the soil solution were lower than that of control soil due to lime ($Ca(OH)_2$) amendment for pH recovery. Lime amendment also affected solubility and fractionation of Pb into soil matrix. The result showed that Pb concentrations of soil solution were consistently lower than that of control soil, and the concentration in the exchangeable fraction in washed soil decreased from 13 to 2 mg/kg. There was no significant difference of biomass yield of rice plant in each pots, and Pb contents in rice roots and grains in washed soil decreased to 50 and 78%, respectively, of the control soil. Therefore, $FeCl_3$ could be used as an acceptable in-situ washing agent for agricultural paddy soil if appropriate soil pH management is subsequently practiced.