DOI QR코드

DOI QR Code

Transition of Lead from Agricultural Paddy Soil Amended with Lime to Rice Plant after Bench-scale In-situ Washing with FeCl3

납 오염 논토양의 원위치 세척을 위한 FeCl3의 Bench-scale 적용성 평가: 소석회를 이용한 토양산도 개선 및 납의 벼 전이특성

  • Received : 2018.01.11
  • Accepted : 2018.02.23
  • Published : 2018.03.31

Abstract

Pot experiments were conducted to assess the applicability of ferric chloride ($FeCl_3$) as a washing agent for laboratory scale in-situ soil washing of paddy soil contaminated with Pb. During the monitoring period for nearly 90 days, the concentrations of Fe and Mn in the soil solution were lower than that of control soil due to lime ($Ca(OH)_2$) amendment for pH recovery. Lime amendment also affected solubility and fractionation of Pb into soil matrix. The result showed that Pb concentrations of soil solution were consistently lower than that of control soil, and the concentration in the exchangeable fraction in washed soil decreased from 13 to 2 mg/kg. There was no significant difference of biomass yield of rice plant in each pots, and Pb contents in rice roots and grains in washed soil decreased to 50 and 78%, respectively, of the control soil. Therefore, $FeCl_3$ could be used as an acceptable in-situ washing agent for agricultural paddy soil if appropriate soil pH management is subsequently practiced.

Keywords

References

  1. Brady, N.C. and Weil, R.R., 2014, Elements of the Nature and Properties of Soils, Pearson Education Limited.
  2. Guo, X., Wei, Z., Wu, Q., Li, C., Qjan, T., and Zheng, W., 2016, Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments, Chemosphere, 147, 412-419. https://doi.org/10.1016/j.chemosphere.2015.12.087
  3. Brooks, R.R., 1983, Biological Methods of Prospecting for Minerals, John Wiley & Sons, New York, USA.
  4. Gwon, S.G., Kim, B.Y., Kim, J.S., Kim, T.C., Yun, C.G., Jung, J.C., and Hong, S.G., 1998, Agricultural Engineering, Hyangmunsa.
  5. Jung, K.B., Park, H.K., Yoo, K.K., Park, J.H., and Choi, U.K., 2013, The effect of pH on citric acid leaching of soil contaminated with heavy metals, J. of Korean Inst. of Resources Recycling, 22(5), 13-19. https://doi.org/10.7844/kirr.2013.22.5.13
  6. Kim, J.Y., Lee, J.H., Kunhikrishnan, A., Kang, D.W., Kim, M.J., Yoo, J.H., Kim, D.H., Lee, Y.J., and Kim, W.I., 2012, Transfer factor of heavy metals from agricultural soil to agricultural products, Korean J Environ Agric, 31(4), 300-307. https://doi.org/10.5338/KJEA.2012.31.4.300
  7. Kirk, G., Greenway, H., Atwell, B.J., Ismail, A.M., and Colmer, T.D., 2014, Adaptation of rice to flooded soils, In: U. Lttge, W. Beyschlag, and J. Cushman(ed.), Progress in Botany 75', Springer, Berlin, Heidelberg, p.225
  8. KME (Korea Ministry of Environment), 2013, Korea standard methods for soil analysis.
  9. KME (Korea Ministry of Environment), 2016, Korea Standard Methods for Water Analysis.
  10. Koh, I.H., Kim, E.Y., Ji, W.H., Yoon, D.G., and Chang, Y.Y., 2015a, The fate of As and heavy metals in the flooded paddy soil stabilized by limestone and steelmaking slag, J. Soil Groundw. Environ., 20(1), 7-18. https://doi.org/10.7857/JSGE.2015.20.1.007
  11. Koh, I.H., Kim, E.Y., Kwon, Y.S., Ji, W.H., Joo, W.H., Kim, J.H., Shin, B.S., and Chang, Y.Y., 2015b, Partitioning of heavy metals between rice plant and limestone-stabilized paddy soil contaminated with heavy metals, J. Soil Groundw. Environ., 20(4), 90-103. https://doi.org/10.7857/JSGE.2015.20.4.090
  12. Koh, I.H., Kim, G.S., Chang, Y.Y., Yang, J.L., Moon, D.H., Choi, Y.L., Ko, M.S., and Ji, W.H., 2017, Characteristics of agricultural paddy soil contaminatd by lead after bench-scale in-situ washing with $FeCl_3$, J. Soil Groundw. Environ., 22(1), 18-26. https://doi.org/10.7857/JSGE.2017.22.1.018
  13. Lee, J.H., Kim, J.Y., Go, W.R., Jeong, E.J., Kunhikrishnan, A., Jung, G.B., Kim, D.H., and Kim, W.I., 2012, Current research trends for heavy metals of agricultural soils and crop uptake in Korea, Korean J Environ Agric, 31(1), 75-95. https://doi.org/10.5338/KJEA.2012.31.1.75
  14. Lee, S.H., Ji, W.H., Lee, W.S., Koo, N.I., Koh, I.H., Kim, M.S., and Park, J.S., 2014, Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings, J. Environ. Manage., 139, 15-21. https://doi.org/10.1016/j.jenvman.2014.02.019
  15. Lim, J.E., Ahmad, M., Lee, S.S., Shope, C.L., Hashimoto, Y., Kim, K.R., Usman, A.R.A., Yang, J.E., and Ok, Y.S., 2013, Effects of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil, Clean-Soil, Air, Water, 41(12), 1235-1241. https://doi.org/10.1002/clen.201200169
  16. Li, X., Coles, B.J., Ramsey, M.H., and Thornton, I., 1995, Sequential extraction of soils for multielement analysis by ICPAES, Chem. Geol., 124, 109-123. https://doi.org/10.1016/0009-2541(95)00029-L
  17. Makino, T., 2014, Heavy metal contamination in Japan, Proceedings of International Forum on Soil and Groundwater, KME (Korea Ministry of Environment), Seoul, Korea, p.31-49.
  18. Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., Maejima, Y., and Sugahara, K., 2007, Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing, Environ. Pollut., 147, 112-119. https://doi.org/10.1016/j.envpol.2006.08.037
  19. Makino, T., Maejima, Y., Akahane, I., Kamiya, T., Takano, H., Fujitomi, S., Ibaraki, T., Kunhikrishnan, A., and Bolan, N., 2016, A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment, Geoderma, 270, 3-9. https://doi.org/10.1016/j.geoderma.2016.01.006
  20. Makino, T., Takano, H., Kamiya, T., Itou, T., Sekiya, N., Inahara, M., and Sakurai, Y., 2008, Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification, Chemosphere, 70, 1035-1043. https://doi.org/10.1016/j.chemosphere.2007.07.080
  21. Meharg, A.A. and Zhao, F.J., 2012, Arsenic & Rice, Springer, Dordrecht, Heidelberg, London, New York.
  22. MFDS (Korea Ministry of Food and Drug Safety), 2016, Korean Food Standards Codex.
  23. Moon, D.H., Chang, Y.Y., Lee, M.H., Cheong, K.H., Ji, W.H., Koh, I.H., Choi, Y.L., and Park, J.H., 2016, Soil washing of heavy metal contaminated paddy soil using a $FeCl_3$ solution, Proceedings of International Research Symposium on Engineering and Technology, Singapore, p.152-153.
  24. NAAS (National Academy of Agricultural Science), 2010, Methods of soil chemical analysis.
  25. Park, S.W., Yang, J.S., Ryu, S.W., Kim, D.Y., Shin, J.D., Kim, W.I., Choi, J.H., Kim, S.L., and Saint, A.F., 2009, Utake and translocation of heavy metals to rice plant on paddy soils in "Top-Rice" cultivation area, Korean J Environ Agric., 28(2), 131-138. https://doi.org/10.5338/KJEA.2009.28.2.131
  26. Pierzynski, G.M., Sims, J.T., and Vance, G.F., 1994, Soils and Environmental Quality, CRC Press, Inc., Boca Raton.
  27. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Dnsley, B.D., Chet, I., and Raskin, I., 1995, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants, J. Biotechnol., 13, 468-474.
  28. Tessier, A., Campbell, P.G.C., and Blsson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851. https://doi.org/10.1021/ac50043a017
  29. Wenzel, W.W., Kichbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils using an improved sequential extraction procedure, Analytica Chimica Acta, 436, 309-323. https://doi.org/10.1016/S0003-2670(01)00924-2
  30. Yun, S.W., Jin, H.G., Kang, S.I., Choi, S.J., Lim, Y.C., and Yu, C., 2010, A comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil, J. of the Korean Geotechnical Society, 26(7), 59-70.
  31. Yun, S.W., Kang, S.I., Jin, H.G., Kim, H.J., and Yu, C., 2011, Leaching characteristics of arsenic and heavy metals and stabilization effects of limestone and steel refining slag in a reducing environment of flooded paddy soil, J. Agric. Life Sci., 45(6), 251-263.
  32. Yang, J.E., Jung, J.B., Kim, J.E., and Lee,G.S., 2008, Ag-Environmental Science, CIR.