Changes of Soil Microbial Phospholipid Fatty Acids as Affected by Red Pepper Cultivation and Compost Amendment

고추재배지에서 퇴비시용에 따른 토양 미생물의 인지질지방산 변화

  • Received : 2010.02.04
  • Accepted : 2010.04.10
  • Published : 2010.04.30

Abstract

Compost as a soil amendment is of importance in enhancing the soil chemical and microbial qualities; however, soil microbial community can vary depending on the composition, and the amount of compost applied to plant in the soil. Responses of soil microbial properties to compost applications with 0, 30, and 60 Mg $ha^{-1}$ were investigated in silt loam soils where red pepper(Capsicum annuum L.) was mainly cultivated in Yeongyang, Gyeongbuk, Korea. The analysis of phospholipid fatty acids (PLFAs) extracted from soil showed that compost amounts significantly increased PLFAs representing as bacteria, fungi, and VAM-fungi as well as the ratio of fungi/bacteria, and monounsaturated/saturated PLFAs. Increasing the amount of compost significantly increased Gram-/Gram+ PLFAs' ratio, but significantly decreased monounsaturated/saturated PLFAs' ratio. Therefore, this result shows that compost would vary to a limited extent the microbial community in red pepper field. However, increase in compost application would change the subgroup structure of microbial community only.

퇴비 등의 유기물 시용은 화학적, 생물적 토양 특성을 변화시킬 수 있으나 그 성분함량과 시용량에 따라 다를 수 있다. 고추 주산지인 경북 영양의 미사질 양토에서 퇴비 0, 30, 60 Mg $ha^{-1}$를 시용하였을 때 토양의 미생물상의 변화를 인지질지방산 분석을 통해 분석하였다. 퇴비 시용량 30과 60 Mg $ha^{-1}$ 을 무처리와 각각 비교하였을 때 세균, 사상균, 균근균 지표지방산의 양은 유의성있는 증가를 보였으며 사상균/세균의 지방산 비와 불포화/포화지방산의 비도 각각 증가하였다. 그러나, 퇴비 시용량의 증가는 그람$^-$/그람$^+$ 세균 지방산의 비는 증가시켰으나 불포화/포화지방산의 비는 감소시켰다. 퇴비는 토양의 화학성과 미생물 군락을 부분적으로 증가시킬 수 있으나, 퇴비량의 증가는 미생물 군락의 구조만을 변화시킬 수 있었다.

Keywords

References

  1. MFAFF. 2009. Agricultural and forestry statistical yearbook. Ministry for food, agriculture. forestry and fisheries. p. 89. Seoul. Korea.
  2. Bastida, F., E. Kandeler, J.L. Moreno, M. Ros, C. Garcia, and T. Hernandez. 2008. Application of fresh and composted organic wastes modifies structure. size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 40:318-329. https://doi.org/10.1016/j.apsoil.2008.05.007
  3. Bossio, D.A., and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbiol. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  4. Brennan, P.J. 1988. Mycobacterium and other actinomycetes. p 204-298. In C. Ratledge et at (ed.). Microbial lipids, vol 1. Academic Press, London.
  5. Bunemann, E.K., G.D. Schwenke, and L. Van Zwieten. 2006. Impact of agricultural in pot on soil organism: a review. Austrian J. Soil Res. 44:379-406. https://doi.org/10.1071/SR05125
  6. Caravaca, F., C. Garcia, M.T. Hernandez, and A. Roldan. 2002. Aggregate stability changes alter organic amendment and mycorrhizal inoculation in the afforestation of a semiarid site with Pinus Halepensis. Appl. Soil Ecol. 19:199-208. https://doi.org/10.1016/S0929-1393(01)00189-5
  7. Chiarini, L., A. Bevivino, C. Dalmastri, C. Nacamulli, and S. Tabacchioni. 1998. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl. Soil Ecol. 8:11-18. https://doi.org/10.1016/S0929-1393(97)00071-1
  8. Demoling, F., L.O. Nilsson, and E. Baath. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem 40:370-379. https://doi.org/10.1016/j.soilbio.2007.08.019
  9. Diaz, J., C. Silvar, M.M. Varela, A. Bernal, and F. Merino. 2005. Fusarium confers protection against several mycelial pathogens of pepper plants. Plant Pathol. 54:773-780. https://doi.org/10.1111/j.1365-3059.2005.01285.x
  10. Diby, P., K.A. Saju, P.J. Jisha. Y.R. Sarma, A. Kumar, and M. Anandaraj. 2005. Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Ann. Microbial. 5:129-133.
  11. Doran, J.W., D.G. Fraser, M.N. Culik, and W.C. Liebhardt. 1988. Influence of alternative and conventional agricultural management on soil microbial process and nitrogen availability. Am. J. Altern. Agric. 2:99-106.
  12. Eriksen, J. 2005. Gross sulphur mineralization-immobilization turnover in soil amended with plant residues. Soil Biol. Biochem. 37:2216-2224. https://doi.org/10.1016/j.soilbio.2005.04.003
  13. Fierer, N., and R.B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America. 103:626-631. https://doi.org/10.1073/pnas.0507535103
  14. Gronli, K.E., A. Frostegard, L.R. Bakken, and M. Ohlson. 2005. Nutrient and carbon additions to the microbial soil community and its impact on tree seedlings in a boreal spruce forest. Plant Soil. 278:275-291. https://doi.org/10.1007/s11104-005-8765-9
  15. Jetiyanon, K. 2007. Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (In937a an In937b) against different pathogens. Biol. Control 42:178-185. https://doi.org/10.1016/j.biocontrol.2007.05.008
  16. Kaur, A., A. Chaudhary, A. Kaur, R. Choudhary, and R. Kaushik. 2005. Phospholipid fatty acid - a bioindicator of environment monitoring and assessment in soil ecosystem. Current Science 89:1103-1112.
  17. Kim, Y.C., H. Jung, K.Y. Kim, and S.K. Park. 2008. An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382. https://doi.org/10.1007/s10658-007-9227-4
  18. Kourtev, P.S., J.G. Ehrenfeld. and M. Haggblom. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152-3166. https://doi.org/10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2
  19. Kroppenstedt, R.M., 1985. Fatty acid and menaquinon analysis o f actinomycetes and related organisms. p. 173-199. In M. Goodfellow et al. (ed.), Chemical methods in bacterial systematics. Academic Press. London.
  20. Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil. 281:309-324. https://doi.org/10.1007/s11104-005-9641-3
  21. NIAST. 2000. Analysis of soil plants. National Institute of Agricultural Science and Technology. Suwon, Korea.
  22. Nilsson, L.O., E. Baath, U. Falkengren-Grerup, and H. Wallander. 2007. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia. 153:375-384. https://doi.org/10.1007/s00442-007-0735-x
  23. Olsson, P.A. 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29:303-310. https://doi.org/10.1111/j.1574-6941.1999.tb00621.x
  24. Park, K., T. Kwon, K. Jang, and Y. Kim. 2008. Short-term effects of cultivars and compost on soil microbial activities and diversities in red pepper field. Kor. J. Environ. Agri. 27:1-5. https://doi.org/10.5338/KJEA.2008.27.1.001
  25. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M. Gale, and D.C. White. 2001. Soil microbial community responses to diairy manure or ammonium nitrate applications. Soil Biol. Biochem. 33:1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  26. Randhawa, P.S., L.M. Condron, H.J. Di, S. Sinaj, and R.D. McLenaghen, 2005. Effect of green manure addition on soil organic phosphorus mineralization. Nurr. Cycl. Agroecosyst. 73:181-189. https://doi.org/10.1007/s10705-005-0593-z
  27. Rasche, F., R. Trondl, C. Naglreiter, T.G. Reichenauer, and A. Sessitsch. 2006. Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can. J. Microbiol. 52:1036-1045. https://doi.org/10.1139/w06-059
  28. Ratledge, C., and S.G. Wilkinson. 1988. Microbial lipids. Academic Press, London.
  29. Ros, M., M.T. Hernanadez, and C. Garcia. 2003. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 35:463-469. https://doi.org/10.1016/S0038-0717(02)00298-5
  30. Saison, C., V. Degrange, R. Oliver, P. Millard, C. Commeaux, D. Montange, and X. Le Roux. 2006. Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-bome microbial community. Environ. Microbiol. 8:247-257. https://doi.org/10.1111/j.1462-2920.2005.00892.x
  31. Singh, K.P., T.K. Srivastava, P.N. Singh. and A. Suman. 2007. Enhancing soil fertility, microbial activity and sugarcane (Saccharum officinarum) Productivity through organics in subtropical conditions. Indian J. Agri. Sci. 77:84-87.
  32. Suh, J.S., T.M. Sa, and S.Y. Yun. 2009. Soil microbiology. Kor. J. Soil Sci. Fert. 42:126-152.
  33. Tejada, M., M.T. Hernandez, and C. Garcia. 2009. Soil restoration using composted plant residues: effects on soil properties. Soil Till. Res. 102:109-117. https://doi.org/10.1016/j.still.2008.08.004
  34. Wallenstein, M.D., S. McNulty, I.J. Fernandez, J. Boggs, and W.H. Schlesinger. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecol. Manag. 222:459-468. https://doi.org/10.1016/j.foreco.2005.11.002
  35. Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil- a review. Biol. Fertil . Soils 29:111-129. https://doi.org/10.1007/s003740050533