• Title/Summary/Keyword: 토양 CO2

Search Result 969, Processing Time 0.027 seconds

Heavy Metal Distributions of Soils in the Vicinity of Shi-Hwa Industrial Complex Region (시화공업단지 주변지역 토양의 중금속 분포)

  • 송영배;이상모
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.87-91
    • /
    • 2003
  • This study was carried out to investigate the heavy metal distributions of soils in the vicinity of Shi-Hwa industrial complex region, where the air pollutants from industrial area could affect the soil environment of near residential and green areas. The ranges of contents of As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in soils were 0.58~3.81, ND~0.91, 0.15~6.33, ND~l.86, 0.14~110.27, ND~l.17, 0.04~10.59, 1.16~86.48 and 1.83~212.65 mg/kg, respectively. For all industrial, residential and green areas, the heavy metal contents were much lower than the standard of Korean Soil Environmental Preservation Act or the critical concentration which phytotoxicity is considered to be possible. Mean values of contents of As were similar in industrial, residential and green areas. However, the mean values of contents of Cd and Cr in industrial area were higher 10 and 5 times than those in residential and green area, respectively. And also the mean values of contents of Co, Cu, Hg, Ni, Pb and Zn in industrial area were higher 2~3 times than those in residential and green area.

Static Supercritical Fluid Extraction of PCBs from Soil Matrix (정적 초임계유체 방식에 의한 토양 중의 PCBs 추출)

  • Ryoo, Keon-Sang;Lee, Won-Kyoung;Hong, Yong-Pyo;Oh, In-Gyung;Kim, Yong-Gyun
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.578-584
    • /
    • 2003
  • Polychlorinated biphenyls (PCBs) known as environmental contaminants in soil were analyzed by the soil pollution standard process test and the static supercritical $CO_2$ extraction mode. It was shown that the percent average recoveries of PCBs by the soil pollution standard process test were ranged in 25-35% and the corresponding standard deviations were above 10%. In contrast, the percent average recoveries of PCBs by the static supercritical $CO_2$ extraction mode were 2-2.5 times higher and standard deviations were within 7%. These results indicate that static supercritical $CO_2$ extraction mode may be a useful alternative to sample pretreatment certified by the soil pollution standard process test. The increasing supercritical $CO_2$ pressure from 1130 psi to 1996 psi at $40^{\circ}C$ enhanced the recovery of all PCB congeners from soil. However, at same Tc and Pc, the equilibrium time (5 versus 60 minutes) had no effect on the recovery of each PCB congener. Finally, similar PCB recoveries were obtained under the same extraction condition, regardless of the molecular weight and structure (coplanar versus non-coplanar) of PCB congeners.

Effects of Grubbing by Wild Boars on the Biological Activities of Forest Floor (멧돼지(Sus scrofa coreanus Heude)의 임상 교란이 토양의 생물학적 활성에 미치는 영향)

  • Cha, Sangsub;Lee, Sang-Hoon;Chae, Hee-Myung;Shim, Jae Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.902-910
    • /
    • 2012
  • This study has been carried out to determine the effects of disturbances from wild boar grubbing on the functions of ecosystem. The experiments was performed in Mt. Jumbong of Long-term Ecological Research Sites of the Ministry of Environment. We measured soil physical properties, soil respiration($CO_2$), microbial biomass C, and soil enzyme activities from both disturbed and control plots. The disturbance sites were divided into two parts, mounds and pits. Soil organic matter contents were highest value at the control plots and lowest at the pit plots, respectively at 20.22% and 15.52%. The soil bulk densities were highest at the pit plots. Soil microbial biomass C and $CO_2$ evolution were significantly higher at the control plots compared to the disturbed plots. The results were positively correlated with soil organic matter contents. The cellulase activity and invertase activity in the soil showed similar pattern as the microbial biomass C and $CO_2$ evolution results. The cellulase activity and invertase activity in the soil were positively correlated with soil microbial biomass C. Soil organic matter contents seemed to affect the soil enzyme activities. The nitrate reductase activities were highest at the pit plots, which showed positive correlation with soil bulk density. The study results showed that the grubbing disturbances by wild boars induced the changes in soil properties, which affected soil microbial activities.

Microbial Degradation of $^{14}C-2$, 6-Diethylaniline in Soil and in Pure Culture ($^{14}C-2$, 6-Diethylaniline의 토양미생물에 의한 분해)

  • Lee, Jae-Koo;Ryu, In-Soo
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.126-134
    • /
    • 1982
  • When $^{14}C-2$, 6-Diethylaniline (2, 6-DEA) was incubated aerobically in soil, $^{14}CO_2$ evolved from non-sterile soil A and B was 6.5 and 10.1%, respectively, in the 21st week. Methanol could extract 3.1 and 13.5% of the radioactivity from soil A and B, respectively, 2, 6-Diethylacetanilide was detected as a degradation product in soil. Chaetomium globosum produced 2, 6-diethyl-p-benzoquinone as a degradation product in pure culture. A possible pathway was proposed to include p-hydroxylation of 2, 6-DEA, formation of quinoneimine, and the subsequent hydrolysis with the release of ammonia.

  • PDF

Degradation of $^{14}C$-propiconazole in soil from different depths (살균제 $^{14}C$-propiconazole의 토심별 분해)

  • An, Deug-Hyeon;Kim, In-Seon;Suh, Yong-Tack
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.8-18
    • /
    • 1999
  • The degradation of a fungicide, $^{14}C$-propiconazole, in sterile and nonsterile soil from different depths was investigated. $^{14}C$-propiconazole plus propiconazole standard was treated on the soil at the rate of 7.55 mg/kg and the soil was incubated at $25^{\circ}C$ for 20 weeks. The amounts of $^{14}CO_{2}$ solvent extractable and non-extractable $^{14}C$, and degradation products of $^{14}C$-propiconazole were investigated during incubation time. The relative amounts of $^{14}CO_{2}$ released in the sterile and nonsterile soils were ranging from 0.7 to 1.3% and from 4.8 to 7.6% of applied $^{14}C$, repectively. The amounts of solvent non-extractable residues in the sterile and nonsterile soils were ranging from 11.2 to 22.1% and from 22.2 to 41.9% of of applied $^{14}C$, repectively. The amounts of solvent non-extractable residues were increased with incubation time and most of $^{14}C$ were detected in the humin fraction. The hydroxylated and ketone compound were confirmed as a degradation products of propiconazole by GC/MS analysis, whereas parent compound was detected in sterile soil, which suggested that propiconazole was not degraded biologically under the sterile soil. From the results of volatilization, mineralization and degradation of propiconazole, propiconazole was stable chemically and bilogically in soil.

  • PDF

The Pilot-scale Treatability Studies of Co-Composting for the Remediation of Diesel Contaminated Soil during the Winter (동절기 유류 오염토양 복원을 위한 Co-composting기술의 현장 적용성 연구)

  • 마정재;고형석;황종식;정민정;최상일;김국진
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.193-201
    • /
    • 1999
  • This study was conducted to check the applicability of pilot-scale co-composting for the remediation of diesel contaminated soil during the winter. Nutrients and microbes were added to enhance the efficiency of bioremediation and fermenting composts were also added to stimulate the microbial activities. As a result. the soil pile was kept at adequate temperature for the bioremediation during the test period of 30∼40 days and initial concentration(2,340mg TPH/kg dry soil) was reduced to 216mg TPH/kg dry soil (approximately 91% removal). During the initial 10∼30 days, it was found that the TPH concentration and the microbial population were rapidly reduced and increased. respectively. The co-composting technology studied can be effectively applied to remediate the diesel contaminated soil during the winter.

  • PDF

Biodegradation Characteristics of Poly(butylene succinate-co-butylene adipate) during Soil Burial Test (토양 매립 시험에서 Poly(butylene succinate-co-butylene adipate)의 생분해 특성)

  • Kim, Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.150-157
    • /
    • 2010
  • Biodegradation behavior of poly(butylene succinate-co-butylene adipate) (PBSA) was examined when PBSA was buried in the natural soil and the soil inoculated with Burkholderia cepacia after sterilization. After 80 days of the soil burial test at room temperature, the PBSA film buried in the natural soil lost 34.0% of its intial weight, while the same film lost 59.2% of its initial weight when buried in the sterile soil inoculated with B. cepacia. The optical and SEM observations of the surface morphology of the PBSA film also indicated that the surface erosion and rupture took place faster when the film was buried in the sterile soil inoculated with B. cepacia compared to the film buried in the natural soil. Viable cell number in the natural soil and that the sterile soil inoculated with B. cepacia increased by a factor of 6~7 and 10~14, respectively as compared to the initial viable cell number.

Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar (기능성 바이오차 생산을 위한 이산화탄소의 영향 평가)

  • Lee, Sangyoon;Lee, Taewoo;Kwon, E. Eilhann
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2022
  • To abate the environmental burdens arising from CO2 emissions, biochar offers a strategic means to sequester carbons due to its recalcitrant nature. Also, biochar has a great potential for the use as carbon-based adsorbent because it is a porous material. As such, developing the surface properties of biochar increases a chance to produce biochar with great adsorption performance. Given that biochar is a byproduct in biomass pyrolysis, characteristics of biochar are contingent on pyrolysis operating parameters. In this respect, this work focused on the investigation of surface properties of biochar by controlling temperature and reaction medium in pyrolysis of pine sawdust as case study. In particular, CO2 was used as reaction medium in pyrolysis process. According to pyrolytic temperature, the surface properties of biochar were indeed developed by CO2. The biochar engineered by CO2 showed the improved capability on CO2 sorption. In addition, CO2 has an effect on energy recovery by enhancing syngas production. Thus, this study offers the functionality of CO2 for converting biomass into engineered biochar as carbon-based adsorbent for CO2 sorption while recovering energy as syngas.

The Relationship Between pH and the Activity of Ferrous Iron In the Reduced Soil Under Water-logging (담수조건(湛水條件)에서 환원(還元)된 토양용액(土壤溶液)중 pH와 Fe++ 이온의 활동도(活動度)와의 관계(關係))

  • Hong, Chong-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.294-298
    • /
    • 1993
  • The relationship between pH and the activity of ferrous iron in the reduced soil under water-logging was investigated theoretically and experimentally. The results of this study revealed, contrary to hitherto assumed, that the $pH-Fe^{+{+}}$ relationship in the commonly occurring rice soils under reduced condition is close to that in $FeCO_3-CO_2-H_2O$ system, being remote from that in $Fe_3(OH)_8-H_2O$ system and $Fe(OH)_2-H_2O$ system. This indicates that the activity of ferrous iron in the reduced rice soils under water-logging is likely to be governed by $FeCO_3$, neither by $Fe_3(OH)_8$, nor by $Fe(OH)_2$.

  • PDF

$Co{^2+}$ 이온으로 오염된 토양에 대한 EDTA 존재 하에서 pH변화에 따른 탈착반응 연구

  • 권회삼;원휘준;안병길;김계남;이병직;오원진;이계호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.808-813
    • /
    • 1998
  • EDTA 의 농도 및 온도가 일정한 조건에서 수용액의 pH 를 변화시켜 가며, 토양으로부터 Co$^2$$^{+}$ 이온의 탈착특성을 살펴보았다. 실험범위에서, pH 4 일 때 $CO_2$$^{+}$ 이온의 탈착율이 가장 양호하였으며, pH 가 상승함에 따라 탈착율이 감소되는 것으로 나타났다. 또한, 반응중 철 성분이 용해되어 나오는데 이는 반응 초기 수소이온에 의한 용해와 반응중 탈착된 Co$^2$$^{+}$ 이온에 의한 용해로 설명하였다.

  • PDF