• Title/Summary/Keyword: 토양 효소 활성

Search Result 352, Processing Time 0.027 seconds

A Study on the Alkaline Protease Produced from Bacillus subtilis (Bacillus subtilis가 생산하는 Alkaline Protease에 관한 연구)

  • Chang, Shin-Jae;Kim, Yoon-Sook;Sung, Ha-Chin;Choi, Yong-Jin;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.356-360
    • /
    • 1988
  • The alkaline protease producing bacteria isolated from soil and identified as Bacillus subtilis. The optimum medium for alkaline protease production from the microorganism was as follows; soluble starch, 1.5% ; proteose peptone, 0.5% ; $K_2HPO_4$, 0.1% ; $MgSO_4{\cdot}7H_2O$, 0.02% and sodium carbonate, 1.0%. The optimum temperature for alkaline protease production was $35^{\circ}C$, and the initial pH of medium was pH 10.5. The alkaline protease activity was about 2,300 U per ml of culture broth by Casein-Folin Method. A 9.2 fold purification of alkaline protease was obtained from culture broth. The recovery was 14% and purified enzyme was identified as single band, and its molecular weight was about 19,000. The optimum temperature for enzyme reaction was $70^{\circ}C$, and optimum pH was 12. The activity of purified enzyme was inhibited by metal ion ($Fe^{++}$), and Phenylmethylsulfonyl Fluoride, a serine protease inhibitor.

  • PDF

Characterization of Xylanase from Bacillus agaradhaerens DK-2386 Isolated from Korean Soil (토양으로부터 분리한 Bacillus agaradhaerens DK-2386 균주가 생산하는 Xylanase의 특성)

  • Choi, Ji-Hwi;Park, Young-Seo;Lee, Hyungjae;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.330-335
    • /
    • 2015
  • The optimum conditions for the production of xylanase from Bacillus agaradhaerens DK-2386 have been previously investigated. In this study xylanase was purified by ammonium sulfate precipitation and CM-sepharose ion exchange chromatography. The molecular mass of the xylanase as determined by SDS-PAGE was 23 kDa in a form of monomeric enzyme. The optimum pH and temperature for xylanase activity was 6.0 and $60^{\circ}C$, respectively. Xylanase activity was increased by the addition of EDTA and then stabilized at $40^{\circ}C$ for 24 h. The maximum xylanase activity was obtained when Birchwood xylan was used as a substrate and the $V_{max}$ and $K_m$ were $49,724{\mu}mol/min$ and 6.08 mg/ml, respectively.

Cloning of Promoters from Alkali-tolerant Bacillus sp. (알카리 내성 Bacillus속 Promoter의 Cloning)

  • 유주현;구본탁;공인수;정용준;박영서
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 1988
  • Promoters of an alkali-tolerant Bacillus sp. isolated from soil have been cloned in Bacillus subtilis using promoter probe vector pPL703. The CAT specific activity of a clone harboring the strongest promoter activity among these transformants was 8.01. This activity was 2.5 times higher than that of Bacillus subtilis harboring expression vector pPL708 and was increased after the end of the logarithmic growth phase. In the 2.8kb of inserted DNA fragment, BamHI and Sal I recognition sites were located.

  • PDF

Side-Effects of SCB Liquid Fertilizer on Seed Germination and Physiological Activity of Pinus densiflora and Maackia amurensis Seedling (소나무와 다릅나무의 종자 발아와 유묘의 생리적 활성에 대한 SCB 액비 효과)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Hyun-Suk;Yoo, Se-Kuel;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.255-262
    • /
    • 2009
  • This study was carried out to investigate the effects of SCB (Slurry Composting & Biofiltration) liquid fertilizer on seed germination properties and physiological activities of P. densiflora and M. amurensis seedling on the sand and tailing soil. Seed germination of two, tree species on the sand and tailing soil was delayed and inhibited under SCB treatment. Seedling growth of two species was also reduced by SCB application, and the growth reduction was associated with its concentration. Chlorophyll content decreased in the leaves of SCB-treated P. densiflora but increased in the leaves of SCB-treated M. amurensis when compared to control seedlings irrigated with tap water. On the other hand, Malondialdehyde (MDA) content, an indicator of lipid peroxidation, decreased in the leaves of SCB-treated P. densiflora, whereas it increased in the leaves of SCB-treated M. amurensis. Antioxidative enzyme activities in the leaves of P. densiflora increased on sand soil treated with 1/6 diluted SCB solution and on tailing soil treated with 1/3 diluted one, whereas those of M. amurensis seedlings increased only on tailing soil applied with the normal SCB solution and the 1/3 diluted SCB solution, respectively. These results were considered as side-effects of SCB liquid fertilizer which might accumulate salt through the physical changes in the soil.c

Defense Response of Cucumber Plants Treated with Neobacillus sp. JC05 Extract against Meloidogyne incognita (Neobacillus sp. JC05 추출물을 처리한 오이 식물의 고구마뿌리혹선충에 대한 방어 반응 검정)

  • Kim, Yu-Ri;Jang, Hwajin;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 2022
  • The effect of Neobacillus sp. JC05 extract on the defense response in cucumber plants against root-knot nematode (RKN) was evaluated. As a result of drench treatment of JC05-extract in cucumber plants, formation of egg mass per plants and disease severity were significantly decreased compared to untreated control plants; the malondialdehyde contents also decreased in JC05-extract treated plants. When eggs of Meloidogyne incognita were inoculated, cucumber plants treated with JC05-extract elevated pathogenesis-related gene expression such as chitinase and lipoxygenase, these are well known as inducing resistance in plants, in addition, peroxidase among antioxidant enzymes was significantly activated. Moreover, the JC05-extract enhanced FDAse activity in soils grown cucumber plants inoculated by eggs of M. incognita. Taken together, these results suggest that the JC05-extract could involve in activation of defense-related mechanisms of cucumber plants and result in decrease of disease occurrence caused by M. incognita.

Effect of Forest Fire on the Microbial Community Activity of Forest Soil according to the Difference between Geology and Soil Depth (산불이 지질과 토심의 차이에 따른 산림토양 미생물 군집 활성도에 미치는 영향에 대한 연구)

  • Ji Seul Kim;Jun Ho Kim;Hyeong Chul Jeong;Eun Young Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • The effects of forest fires on the activity of microbial communities in topsoil and subsoil were investigated. Samples were collected from Korean forest soils comprising mainly igneous and sedimentary rocks. Analysis of beta-glucosidase, found higher microbial activity in sedimentary rocks than in igneous rocks. Enzyme activity was not observed immediately after fire, but was restored over time. The enzyme activity of subsoil was inhibited by 33~46% compared with that in the topsoil, regardless of soil damage. The effect of fire on the availability of microbial substrate was investigated using EcoPlate. The percentages of average well color development values of damaged and normal topsoil were 52.7~56.8% and 62.3~83.6%, respectively. Forest fires appear to affect the diversity and substrate availability of the subsoil microbial community by accelerating the decomposition of soil organic matter. The Shanon index, representing microbial biodiversity, was high in the topsoil of all samples; it was higher for soil microorganisms in sedimentary rocks than in igneous rocks, and higher in topsoil than in subsoil.

토양균에서 항생물질 및 효소억제제의 분리와 구조 연구

  • 구양모;이윤영;김경자;최응칠;김범태;주정호;이창훈
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.179-179
    • /
    • 1994
  • 새로운 항생물질을 개발하기 위하여 토양으로부터 분리한 균주를 액체 및 고체배지에서 배양하여 여러 검정균에 대하여 종이디스크법으로 항균효력을 조사하였다. 그 결과 (+), G(-), fungi 등에 강한 항균 효력을 보인 토양균 SNUS 8810-43과 Mycobacterium, fungi에 항균력을 보인 토양균 SNUS 8810-129를 선택하여 각각의 배양액에서 항생물질을 분리하고, 분리한 항생물질의 구조를 규명하고자 하였다. 토양균 SNUS 8810-43의 배양액으로부터 항생물질을 분리하기 위하여 양이온 교환 수지 관 크로마토그래피와 셀룰로오스 관 크로마토그래피를 수행하여 시료 JJH-II-46-43을 얻었다. 시료 JJH-II-46-43의 IR, $^1$H-NMR, $^{13}$C-NMR, $^1$H-$^1$H COSY, $^1$H-$^{13}$C COSY, FAB-MS 스펙트럼을 얻어 분리한 항생물질의 구조를 분석하여 이 항생물질의 구조가 N-methylstreptothricin과 동일하다는 것을 확인하였다. Mycobacterium smegmatis에 강한 활성을 나타내는 물질을 토양균 SNUS 8810-129로 부터 분리하였다. 토양균 SNUS 8810-129를 배양한 V-8 아가판을 메탄올로 추출하여 이를 실리카겔 관 크로마토그래피와 preparative TLC로 시료 LCH-IV-17B, LCH-III-387을 얻었다. 시료LCH-IV-l7B, LCH-III-387의 $^1$H-NMR, $^{13}$C-NMR, FAB-MS, CI-MS, IR등의 스펙트럼을 얻어 분리한 항생물질의 구조를 분석하여 이 항생물질이 glycolipid계 항생물질이라는 것을 알았다. $^{13}$C-NMR 상의 자료와 화학적인 방법으로 구성당을 조사한 결과 이 항생물질을 이루고있는 당은 rhamnose 임을 알았다. 또 이 항생물질을 구성하는 지방산은 화학적인 방법과 MS 스펙트럼, $^{13}$C-NMR 스펙트럼으로부터 hydroxydecanoic acid인 것으로 확인되었다. 항생물질 LCH-III-387와 항생물질 LCH-IV-l7B는 각각 rhamnose를 1, 2개 포함하고 있는 것으로 확인되었다. 그리고 동일한 탄소수의 지방산을 가지고 있는 것으로 생각되었다. 이들 항생물질을 이루는 구성당과 지방산간의 정확한 연결및 구조, 생리활성에 관한 연구는 계속 수행중에 있다.

  • PDF

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF

Effects of Insecticides on Enzyme Activities in Soil Environment (살충제(殺蟲劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Hong, Jong-Uck;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.294-303
    • /
    • 1986
  • The effects of insecticides on biochemical precesses in soil were studied by determining the effects of the chemical structure of each insecticides on enzyme activities, pesticide residue and total number of bacteria revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}$ for 56 days. The inhibition effects of insectides on enzyme activites in soil decreased in the order: dithiophosphoric acid > thiophosphhoric acid > phosphoric acid > carbamate insecticides for urease and phosphatase, thiophosphoric acid > dithiophosphoric acid > phosphoric acid > carbamate insecticides for L-glutaminase and protease. The inhibition effects of organophophorus insecticides on enzyme activities in soil were maintained longer than those of carbamate insecticides. Carbamate insecticides increased the activities of protease and L-glutaminase at 56 days. When insecticides were treated in soil together with urea, the degradation of insecticides was accelerated. By treatment of insecticides, the total number of bacteria was decreased at the early stage of treatment but thereafter increased according to phosphoric acid and carbamate insecticides.

  • PDF

Effects of Soil pH on the Growth and Antioxidant System in French Marigold (Tagetes patula L.) (토양 pH가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향)

  • Kim, Jeung-Bea;Cho, Hyun-Je;Kim, Hak-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.348-352
    • /
    • 2007
  • To investigate the effects of soil pH on plants, the seedlings of french marigold (Tagetes patula L.) was transplanted into the soils acidified with $H_{2}SO_{4}$ solutions (pH 5.3, 4.5, 3.9, 3.5). The level of malondialdehyde was significantly increased by soil acidification. As the pH levels decreased from 5.3 to 3.5, the contents of dehydroascorbate and oxidized glutathione of the plant were significantly increased. The antioxidative enzyme activities of the plant affected by soil acidification were increased as the pH decreased.